81 lines
2.7 KiB
Python
81 lines
2.7 KiB
Python
|
"""
|
||
|
Linear Transformer proposed in "Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention"
|
||
|
Modified from: https://github.com/idiap/fast-transformers/blob/master/fast_transformers/attention/linear_attention.py
|
||
|
"""
|
||
|
|
||
|
import torch
|
||
|
from torch.nn import Module, Dropout
|
||
|
|
||
|
|
||
|
def elu_feature_map(x):
|
||
|
return torch.nn.functional.elu(x) + 1
|
||
|
|
||
|
|
||
|
class LinearAttention(Module):
|
||
|
def __init__(self, eps=1e-6):
|
||
|
super().__init__()
|
||
|
self.feature_map = elu_feature_map
|
||
|
self.eps = eps
|
||
|
|
||
|
def forward(self, queries, keys, values, q_mask=None, kv_mask=None):
|
||
|
""" Multi-Head linear attention proposed in "Transformers are RNNs"
|
||
|
Args:
|
||
|
queries: [N, L, H, D]
|
||
|
keys: [N, S, H, D]
|
||
|
values: [N, S, H, D]
|
||
|
q_mask: [N, L]
|
||
|
kv_mask: [N, S]
|
||
|
Returns:
|
||
|
queried_values: (N, L, H, D)
|
||
|
"""
|
||
|
Q = self.feature_map(queries)
|
||
|
K = self.feature_map(keys)
|
||
|
|
||
|
# set padded position to zero
|
||
|
if q_mask is not None:
|
||
|
Q = Q * q_mask[:, :, None, None]
|
||
|
if kv_mask is not None:
|
||
|
K = K * kv_mask[:, :, None, None]
|
||
|
values = values * kv_mask[:, :, None, None]
|
||
|
|
||
|
v_length = values.size(1)
|
||
|
values = values / v_length # prevent fp16 overflow
|
||
|
KV = torch.einsum("nshd,nshv->nhdv", K, values) # (S,D)' @ S,V
|
||
|
Z = 1 / (torch.einsum("nlhd,nhd->nlh", Q, K.sum(dim=1)) + self.eps)
|
||
|
queried_values = torch.einsum("nlhd,nhdv,nlh->nlhv", Q, KV, Z) * v_length
|
||
|
|
||
|
return queried_values.contiguous()
|
||
|
|
||
|
|
||
|
class FullAttention(Module):
|
||
|
def __init__(self, use_dropout=False, attention_dropout=0.1):
|
||
|
super().__init__()
|
||
|
self.use_dropout = use_dropout
|
||
|
self.dropout = Dropout(attention_dropout)
|
||
|
|
||
|
def forward(self, queries, keys, values, q_mask=None, kv_mask=None):
|
||
|
""" Multi-head scaled dot-product attention, a.k.a full attention.
|
||
|
Args:
|
||
|
queries: [N, L, H, D]
|
||
|
keys: [N, S, H, D]
|
||
|
values: [N, S, H, D]
|
||
|
q_mask: [N, L]
|
||
|
kv_mask: [N, S]
|
||
|
Returns:
|
||
|
queried_values: (N, L, H, D)
|
||
|
"""
|
||
|
|
||
|
# Compute the unnormalized attention and apply the masks
|
||
|
QK = torch.einsum("nlhd,nshd->nlsh", queries, keys)
|
||
|
if kv_mask is not None:
|
||
|
QK.masked_fill_(~(q_mask[:, :, None, None] * kv_mask[:, None, :, None]), float('-inf'))
|
||
|
|
||
|
# Compute the attention and the weighted average
|
||
|
softmax_temp = 1. / queries.size(3)**.5 # sqrt(D)
|
||
|
A = torch.softmax(softmax_temp * QK, dim=2)
|
||
|
if self.use_dropout:
|
||
|
A = self.dropout(A)
|
||
|
|
||
|
queried_values = torch.einsum("nlsh,nshd->nlhd", A, values)
|
||
|
|
||
|
return queried_values.contiguous()
|