fix lightning, prepare sweeps
This commit is contained in:
parent
d8169e01bc
commit
37c537ca31
@ -1,6 +1,8 @@
|
||||
seed: 0
|
||||
mixed_precision: false
|
||||
base_lr: 4.0e-4
|
||||
# base_lr: 4.0e-4
|
||||
base_lr: 0.001
|
||||
t_max: 161
|
||||
|
||||
nr_gpus: 3
|
||||
batch_size: 2
|
||||
@ -16,7 +18,7 @@ max_disp: 256
|
||||
image_width: 640
|
||||
image_height: 480
|
||||
# training_data_path: "./stereo_trainset/crestereo"
|
||||
pattern_attention: true
|
||||
pattern_attention: false
|
||||
dataset: "blender"
|
||||
# training_data_path: "/media/Data1/connecting_the_dots_data/ctd_data/"
|
||||
training_data_path: "/media/Data1/connecting_the_dots_data/blender_renders/data"
|
||||
|
@ -384,7 +384,7 @@ class BlenderDataset(CTDDataset):
|
||||
)
|
||||
|
||||
if not self.use_lightning:
|
||||
right_img = right_img.transpose((2, 0, 1)).astype("uint8")
|
||||
# right_img = right_img.transpose((2, 0, 1)).astype("uint8")
|
||||
return {
|
||||
"left": left_img,
|
||||
"right": right_img,
|
||||
@ -408,7 +408,7 @@ class BlenderDataset(CTDDataset):
|
||||
# return disp.astype(np.float32) / 32
|
||||
# FIXME temporarily increase disparity until new data with better depth values is generated
|
||||
# higher values seem to speedup convergence, but introduce much stronger artifacting
|
||||
# mystery_factor = 150
|
||||
mystery_factor = 1
|
||||
mystery_factor = 150
|
||||
# mystery_factor = 1
|
||||
disp = (baseline * fl * mystery_factor) / depth
|
||||
return disp.astype(np.float32)
|
||||
|
@ -38,10 +38,10 @@ class CREStereo(nn.Module):
|
||||
self.update_block = BasicUpdateBlock(hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4)
|
||||
|
||||
# # NOTE Position_encoding as workaround for TensorRt
|
||||
image1_shape = [1, 2, 480, 640]
|
||||
self.pos_encoding_fn_small = PositionEncodingSine(
|
||||
d_model=256, max_shape=(image1_shape[2] // 16, image1_shape[3] // 16)
|
||||
)
|
||||
# image1_shape = [1, 2, 480, 640]
|
||||
# self.pos_encoding_fn_small = PositionEncodingSine(
|
||||
# d_model=256, max_shape=(image1_shape[2] // 16, image1_shape[3] // 16)
|
||||
# )
|
||||
|
||||
# loftr
|
||||
self.self_att_fn = LocalFeatureTransformer(
|
||||
@ -141,10 +141,12 @@ class CREStereo(nn.Module):
|
||||
d_model=256, max_shape=(image1.shape[2] // 16, image1.shape[3] // 16)
|
||||
)
|
||||
# 'n c h w -> n (h w) c'
|
||||
x_tmp = self.pos_encoding_fn_small(fmap1_dw16)
|
||||
# x_tmp = self.pos_encoding_fn_small(fmap1_dw16)
|
||||
x_tmp = pos_encoding_fn_small(fmap1_dw16)
|
||||
fmap1_dw16 = x_tmp.permute(0, 2, 3, 1).reshape(x_tmp.shape[0], x_tmp.shape[2] * x_tmp.shape[3], x_tmp.shape[1])
|
||||
# 'n c h w -> n (h w) c'
|
||||
x_tmp = self.pos_encoding_fn_small(fmap2_dw16)
|
||||
# x_tmp = self.pos_encoding_fn_small(fmap2_dw16)
|
||||
x_tmp = pos_encoding_fn_small(fmap2_dw16)
|
||||
fmap2_dw16 = x_tmp.permute(0, 2, 3, 1).reshape(x_tmp.shape[0], x_tmp.shape[2] * x_tmp.shape[3], x_tmp.shape[1])
|
||||
|
||||
# FIXME experimental ! no self-attention for pattern
|
||||
|
1
train.py
1
train.py
@ -419,6 +419,7 @@ def main(args):
|
||||
# print(f'left {left.shape}, right {right.shape}')
|
||||
# left = left.transpose([2, 0, 1])
|
||||
right = right.transpose([1, 2, 0])
|
||||
|
||||
# right = right.transpose(2, 3).transpose(2, 3)#.transpose(1, 2)
|
||||
# print(f'left {left.shape}, right {right.shape}')
|
||||
|
||||
|
@ -5,10 +5,8 @@ import logging
|
||||
from collections import namedtuple
|
||||
|
||||
import yaml
|
||||
# from tensorboardX import SummaryWriter
|
||||
|
||||
from nets import Model
|
||||
# from dataset import CREStereoDataset
|
||||
from dataset import BlenderDataset, CREStereoDataset, CTDDataset
|
||||
|
||||
import torch
|
||||
@ -18,8 +16,11 @@ import torch.optim as optim
|
||||
from torch.utils.data import DataLoader
|
||||
from pytorch_lightning import LightningDataModule, LightningModule, Trainer
|
||||
from pytorch_lightning import Trainer, seed_everything
|
||||
from pytorch_lightning.loggers import WandbLogger
|
||||
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
|
||||
from pytorch_lightning.callbacks import LearningRateMonitor
|
||||
from pytorch_lightning.callbacks import ModelCheckpoint
|
||||
from pytorch_lightning.loggers import WandbLogger
|
||||
from pytorch_lightning.strategies import DDPSpawnStrategy
|
||||
|
||||
seed_everything(42, workers=True)
|
||||
|
||||
@ -39,11 +40,9 @@ def normalize_and_colormap(img):
|
||||
return ret
|
||||
|
||||
|
||||
def log_images(left, right, pred_disp, gt_disp, wandb_logger=None):
|
||||
# wandb_logger.log_text('test')
|
||||
# return
|
||||
def log_images(left, right, pred_disp, gt_disp):
|
||||
log = {}
|
||||
batch_idx = 1
|
||||
batch_idx = 0
|
||||
|
||||
if isinstance(pred_disp, list):
|
||||
pred_disp = pred_disp[-1]
|
||||
@ -100,32 +99,13 @@ def ensure_dir(path):
|
||||
os.makedirs(path, exist_ok=True)
|
||||
|
||||
|
||||
def adjust_learning_rate(optimizer, epoch):
|
||||
|
||||
warm_up = 0.02
|
||||
const_range = 0.6
|
||||
min_lr_rate = 0.05
|
||||
|
||||
if epoch <= args.n_total_epoch * warm_up:
|
||||
lr = (1 - min_lr_rate) * args.base_lr / (
|
||||
args.n_total_epoch * warm_up
|
||||
) * epoch + min_lr_rate * args.base_lr
|
||||
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
|
||||
lr = args.base_lr
|
||||
else:
|
||||
lr = (min_lr_rate - 1) * args.base_lr / (
|
||||
(1 - const_range) * args.n_total_epoch
|
||||
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
|
||||
|
||||
for param_group in optimizer.param_groups:
|
||||
param_group['lr'] = lr
|
||||
|
||||
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8, test=False):
|
||||
'''
|
||||
valid: (2, 384, 512) (B, H, W) -> (B, 1, H, W)
|
||||
flow_preds[0]: (B, 2, H, W)
|
||||
flow_gt: (B, 2, H, W)
|
||||
'''
|
||||
"""
|
||||
if test:
|
||||
# print('sequence loss')
|
||||
if valid.shape != (2, 480, 640):
|
||||
@ -136,6 +116,7 @@ def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8, test=False):
|
||||
if valid.shape != (2, 480, 640):
|
||||
valid = valid.transpose(0,1)
|
||||
# print(valid.shape)
|
||||
"""
|
||||
# print(valid.shape)
|
||||
# print(flow_preds[0].shape)
|
||||
# print(flow_gt.shape)
|
||||
@ -143,7 +124,7 @@ def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8, test=False):
|
||||
flow_loss = 0.0
|
||||
|
||||
# TEST
|
||||
flow_gt = torch.squeeze(flow_gt, dim=-1)
|
||||
# flow_gt = torch.squeeze(flow_gt, dim=-1)
|
||||
|
||||
for i in range(n_predictions):
|
||||
i_weight = gamma ** (n_predictions - i - 1)
|
||||
@ -155,16 +136,88 @@ def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8, test=False):
|
||||
|
||||
|
||||
class CREStereoLightning(LightningModule):
|
||||
def __init__(self, args, logger):
|
||||
def __init__(self, args, logger, pattern_path, data_path):
|
||||
super().__init__()
|
||||
self.batch_size = args.batch_size
|
||||
self.wandb_logger = logger
|
||||
self.lr = args.base_lr
|
||||
print(f'lr = {self.lr}')
|
||||
self.T_max = args.t_max if args.t_max else None
|
||||
self.pattern_attention = args.pattern_attention
|
||||
self.pattern_path = pattern_path
|
||||
self.data_path = data_path
|
||||
self.model = Model(
|
||||
max_disp=args.max_disp, mixed_precision=args.mixed_precision, test_mode=False
|
||||
)
|
||||
|
||||
def forward(self, image1, image2, flow_init=None, iters=10, upsample=True, test_mode=False, self_attend_right=True):
|
||||
return self.model(image1, image2, flow_init, iters, upsample, test_mode, self_attend_right)
|
||||
def train_dataloader(self):
|
||||
dataset = BlenderDataset(
|
||||
root=self.data_path,
|
||||
pattern_path=self.pattern_path,
|
||||
use_lightning=True,
|
||||
)
|
||||
dataloader = DataLoader(
|
||||
dataset,
|
||||
self.batch_size,
|
||||
shuffle=True,
|
||||
num_workers=4,
|
||||
drop_last=True,
|
||||
persistent_workers=True,
|
||||
pin_memory=True,
|
||||
)
|
||||
# num_workers=0, drop_last=True, persistent_workers=False, pin_memory=True)
|
||||
return dataloader
|
||||
|
||||
def val_dataloader(self):
|
||||
test_dataset = BlenderDataset(
|
||||
root=self.data_path,
|
||||
pattern_path=self.pattern_path,
|
||||
test_set=True,
|
||||
use_lightning=True,
|
||||
)
|
||||
|
||||
test_dataloader = DataLoader(
|
||||
test_dataset,
|
||||
self.batch_size,
|
||||
shuffle=False,
|
||||
num_workers=4,
|
||||
drop_last=False,
|
||||
persistent_workers=True,
|
||||
pin_memory=True
|
||||
)
|
||||
# num_workers=0, drop_last=True, persistent_workers=False, pin_memory=True)
|
||||
return test_dataloader
|
||||
|
||||
def test_dataloader(self):
|
||||
# TODO change this to use IRL data?
|
||||
test_dataset = BlenderDataset(
|
||||
root=self.data_path,
|
||||
pattern_path=self.pattern_path,
|
||||
test_set=True,
|
||||
use_lightning=True,
|
||||
)
|
||||
|
||||
test_dataloader = DataLoader(
|
||||
test_dataset,
|
||||
self.batch_size,
|
||||
shuffle=False,
|
||||
num_workers=4,
|
||||
drop_last=False,
|
||||
persistent_workers=True,
|
||||
pin_memory=True
|
||||
)
|
||||
return test_dataloader
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image1,
|
||||
image2,
|
||||
flow_init=None,
|
||||
iters=10,
|
||||
upsample=True,
|
||||
test_mode=False,
|
||||
):
|
||||
return self.model(image1, image2, flow_init, iters, upsample, test_mode, self.pattern_attention)
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
left, right, gt_disp, valid_mask = batch
|
||||
@ -174,6 +227,10 @@ class CREStereoLightning(LightningModule):
|
||||
loss = sequence_loss(
|
||||
flow_predictions, gt_flow, valid_mask, gamma=0.8
|
||||
)
|
||||
if batch_idx % 128 == 0:
|
||||
image_log = log_images(left, right, flow_predictions, gt_disp)
|
||||
image_log['key'] = 'debug_train'
|
||||
self.wandb_logger.log_image(**image_log)
|
||||
self.log("train_loss", loss)
|
||||
return loss
|
||||
|
||||
@ -186,22 +243,31 @@ class CREStereoLightning(LightningModule):
|
||||
flow_predictions, gt_flow, valid_mask, gamma=0.8
|
||||
)
|
||||
self.log("val_loss", val_loss)
|
||||
if batch_idx % 4 == 0:
|
||||
if batch_idx % 8 == 0:
|
||||
self.wandb_logger.log_image(**log_images(left, right, flow_predictions, gt_disp))
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
left, right, gt_disp, valid_mask = batch
|
||||
gt_disp = torch.unsqueeze(gt_disp, dim=1) # [2, 384, 512] -> [2, 1, 384, 512] gt_flow = torch.cat([gt_disp, gt_disp * 0], dim=1) # [2, 2, 384, 512]
|
||||
gt_disp = torch.unsqueeze(gt_disp, dim=1) # [2, 384, 512] -> [2, 1, 384, 512]
|
||||
gt_flow = torch.cat([gt_disp, gt_disp * 0], dim=1) # [2, 2, 384, 512]
|
||||
flow_predictions = self.forward(left, right, test_mode=True)
|
||||
test_loss = sequence_loss(
|
||||
flow_predictions, gt_flow, valid_mask, gamma=0.8
|
||||
)
|
||||
self.log("test_loss", test_loss)
|
||||
print('test_batch_idx:', batch_idx)
|
||||
self.wandb_logger.log_image(**log_images(left, right, flow_predictions, gt_disp))
|
||||
|
||||
def configure_optimizers(self):
|
||||
return optim.Adam(self.model.parameters(), lr=0.1, betas=(0.9, 0.999))
|
||||
optimizer = optim.Adam(self.model.parameters(), lr=self.lr, betas=(0.9, 0.999))
|
||||
print('len(self.train_dataloader)', len(self.train_dataloader()))
|
||||
lr_scheduler = {
|
||||
'scheduler': torch.optim.lr_scheduler.CosineAnnealingLR(
|
||||
optimizer,
|
||||
T_max=self.T_max if self.T_max else len(self.train_dataloader())/self.batch_size,
|
||||
),
|
||||
'name': 'CosineAnnealingLRScheduler',
|
||||
}
|
||||
return [optimizer], [lr_scheduler]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@ -209,61 +275,54 @@ if __name__ == "__main__":
|
||||
args = parse_yaml("cfgs/train.yaml")
|
||||
pattern_path = '/home/nils/miniprojekt/kinect_syn_ref.png'
|
||||
|
||||
wandb_logger = WandbLogger(project="crestereo-lightning")
|
||||
wandb.config.update(args._asdict())
|
||||
run = wandb.init(project="crestereo-lightning", config=args._asdict(), tags=['new_scheduler', 'default_lr', f'{"" if args.pattern_attention else "no-"}pattern-attention'], notes='')
|
||||
run.config.update(args._asdict())
|
||||
config = wandb.config
|
||||
wandb_logger = WandbLogger(project="crestereo-lightning", id=run.id, log_model=True)
|
||||
# wandb_logger = WandbLogger(project="crestereo-lightning", log_model='all')
|
||||
# wandb_logger.experiment.config.update(args._asdict())
|
||||
|
||||
model = CREStereoLightning(args, wandb_logger)
|
||||
|
||||
dataset = BlenderDataset(
|
||||
root=args.training_data_path,
|
||||
pattern_path=pattern_path,
|
||||
use_lightning=True,
|
||||
)
|
||||
test_dataset = BlenderDataset(
|
||||
root=args.training_data_path,
|
||||
pattern_path=pattern_path,
|
||||
test_set=True,
|
||||
use_lightning=True,
|
||||
)
|
||||
|
||||
dataloader = DataLoader(
|
||||
dataset,
|
||||
args.batch_size,
|
||||
shuffle=True,
|
||||
num_workers=16,
|
||||
drop_last=True,
|
||||
persistent_workers=True,
|
||||
pin_memory=True,
|
||||
)
|
||||
# num_workers=0, drop_last=True, persistent_workers=False, pin_memory=True)
|
||||
test_dataloader = DataLoader(
|
||||
test_dataset,
|
||||
args.batch_size,
|
||||
shuffle=False,
|
||||
num_workers=16,
|
||||
drop_last=False,
|
||||
persistent_workers=True,
|
||||
pin_memory=True
|
||||
)
|
||||
model = CREStereoLightning(
|
||||
# args,
|
||||
config,
|
||||
wandb_logger,
|
||||
pattern_path,
|
||||
args.training_data_path,
|
||||
# lr=0.00017378008287493763, # found with auto_lr_find=True
|
||||
)
|
||||
# NOTE turn this down once it's working, this might use too much space
|
||||
# wandb_logger.watch(model, log_graph=False) #, log='all')
|
||||
|
||||
trainer = Trainer(
|
||||
accelerator='gpu',
|
||||
devices=2,
|
||||
devices=args.nr_gpus,
|
||||
max_epochs=args.n_total_epoch,
|
||||
callbacks=[
|
||||
EarlyStopping(
|
||||
monitor="val_loss",
|
||||
mode="min",
|
||||
patience=4,
|
||||
patience=16,
|
||||
),
|
||||
LearningRateMonitor(),
|
||||
ModelCheckpoint(
|
||||
monitor="val_loss",
|
||||
mode="min",
|
||||
save_top_k=2,
|
||||
save_last=True,
|
||||
)
|
||||
],
|
||||
accumulate_grad_batches=8,
|
||||
strategy=DDPSpawnStrategy(find_unused_parameters=False),
|
||||
# auto_scale_batch_size='binsearch',
|
||||
# auto_lr_find=True,
|
||||
accumulate_grad_batches=4,
|
||||
deterministic=True,
|
||||
check_val_every_n_epoch=1,
|
||||
limit_val_batches=24,
|
||||
limit_test_batches=24,
|
||||
limit_val_batches=64,
|
||||
limit_test_batches=256,
|
||||
logger=wandb_logger,
|
||||
default_root_dir=args.log_dir_lightning,
|
||||
)
|
||||
|
||||
trainer.fit(model, dataloader, test_dataloader)
|
||||
# trainer.tune(model)
|
||||
trainer.fit(model)
|
||||
trainer.validate()
|
||||
|
Loading…
Reference in New Issue
Block a user