frontend/main.py: initial commit

most likely borked, but needs testing
This commit is contained in:
Nils Koch 2022-05-30 16:41:08 +02:00
parent 9740e5d647
commit 3f48276aed

111
frontend/main.py Normal file
View File

@ -0,0 +1,111 @@
from typing import Optional
from fastapi import FastAPI
from pydantic import BaseModel
import numpy as np
from cv2 import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..nets import Model
app = FastAPI()
# TODO
# beide modelle laden, jeweils eine gpu zuweisen
# routen bauen, gegen die man bilder werfen kann, die dann jeweils von einem modell interpretiert werden
# ergebnisse zurueck geben
#
# input validierung nicht vergessen
# paramter (bildgroesse etc.) konfigurierbar machen oder automatisch rausfinden?
# kommt ctd überhaupt mit was anderem klar?
class Item(BaseModel):
name: str
price: float
is_offer: Optional[bool] = None
class IrImage(BaseModel):
image: np.array
reference_pattern_path = '/home/nils/kinect_reference_cropped.png'
reference_pattern = cv2.imread(reference_pattern_path)
model_path = "../train_log/models/latest.pth"
device = torch.device('cuda:0')
model = Model(max_disp=256, mixed_precision=False, test_mode=True)
model = nn.DataParallel(model, device_ids=[])
# model.load_state_dict(torch.load(model_path), strict=False)
state_dict = torch.load(model_path)['state_dict']
model.load_state_dict(state_dict, strict=True)
model.to(device)
model.eval()
def normalize_and_colormap(img):
ret = (img - img.min()) / (img.max() - img.min()) * 255.0
if isinstance(ret, torch.Tensor):
ret = ret.cpu().detach().numpy()
ret = ret.astype("uint8")
ret = cv2.applyColorMap(ret, cv2.COLORMAP_INFERNO)
return ret
def inference_ctd(left, right, model, n_iter=20):
print("Model Forwarding...")
# print(left.shape)
# left = left.cpu().detach().numpy()
# imgL = left
# imgR = right.cpu().detach().numpy()
imgL = np.ascontiguousarray(left[None, :, :, :])
imgR = np.ascontiguousarray(right[None, :, :, :])
# chosen for convenience
device = torch.device('cuda:0')
imgL = torch.tensor(imgL.astype("float32")).to(device)
imgR = torch.tensor(imgR.astype("float32")).to(device)
imgL = imgL.transpose(2, 3).transpose(1, 2)
imgL_dw2 = F.interpolate(
imgL,
size=(imgL.shape[2] // 2, imgL.shape[3] // 2),
mode="bilinear",
align_corners=True,
)
imgR_dw2 = F.interpolate(
imgR,
size=(imgL.shape[2] // 2, imgL.shape[3] // 2),
mode="bilinear",
align_corners=True,
)
with torch.inference_mode():
pred_flow_dw2 = model(image1=imgL_dw2, image2=imgR_dw2, iters=n_iter, flow_init=None)
pred_flow = model(imgL, imgR, iters=n_iter, flow_init=pred_flow_dw2)
for i, (pf, pf_dw2) in enumerate(zip(pred_flow, pred_flow_dw2)):
pred_disp = torch.squeeze(pf[:, 0, :, :]).cpu().detach().numpy()
pred_disp_norm = cv2.normalize(pred_disp, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8U)
return pred_disp_norm
@app.put("/ir")
def read_ir_input(ir_image: IrImage):
pred_disp = inference_ctd(ir_image.image, reference_pattern)
return {"pred_disp": pred_disp}
@app.get("/items/{item_id}")
def read_item(item_id: int, q: Optional[str] = None):
return {"item_id": item_id, "q": q}
@app.put("/items/{item_id}")
def update_item(item_id: int, item: Item):
return {"item_price": item.price, "item_id": item_id}