test_model.py: cleanup

main
Nils Koch 3 years ago
parent 7e0305ed91
commit 6ba2cd9e5d
  1. 30
      test_model.py

@ -8,7 +8,6 @@ from nets import Model
import wandb import wandb
import random
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from dataset import CTDDataset from dataset import CTDDataset
from train import normalize_and_colormap, parse_yaml, inference as ctd_inference from train import normalize_and_colormap, parse_yaml, inference as ctd_inference
@ -79,35 +78,6 @@ if __name__ == '__main__':
model.to(device) model.to(device)
model.eval() model.eval()
CTD = True
if not CTD:
left_img = cv2.imread("../test_imgs/left.png")
right_img = cv2.imread("../test_imgs/right.png")
in_h, in_w = left_img.shape[:2]
# Resize image in case the GPU memory overflows
eval_h, eval_w = (in_h, in_w)
# FIXME borked for some reason, hopefully not very important
imgL = cv2.resize(left_img, (eval_w, eval_h), interpolation=cv2.INTER_LINEAR)
imgR = cv2.resize(right_img, (eval_w, eval_h), interpolation=cv2.INTER_LINEAR)
pred = inference(imgL, imgR, model, n_iter=20)
t = float(in_w) / float(eval_w)
disp = cv2.resize(pred, (in_w, in_h), interpolation=cv2.INTER_LINEAR) * t
disp_vis = (disp - disp.min()) / (disp.max() - disp.min()) * 255.0
disp_vis = disp_vis.astype("uint8")
disp_vis = cv2.applyColorMap(disp_vis, cv2.COLORMAP_INFERNO)
combined_img = np.hstack((left_img, disp_vis))
# cv2.namedWindow("output", cv2.WINDOW_NORMAL)
# cv2.imshow("output", combined_img)
cv2.imwrite("output.jpg", disp_vis)
# cv2.waitKey(0)
else:
dataset = CTDDataset('/media/Data1/connecting_the_dots_data/ctd_data/', data_type=data_type, dataset = CTDDataset('/media/Data1/connecting_the_dots_data/ctd_data/', data_type=data_type,
pattern_path=reference_pattern_path, augment=augment) pattern_path=reference_pattern_path, augment=augment)
dataloader = DataLoader(dataset, args.batch_size, shuffle=True, dataloader = DataLoader(dataset, args.batch_size, shuffle=True,

Loading…
Cancel
Save