last batch of live-fixes and improvments

This commit is contained in:
Cpt.Captain 2022-09-23 11:27:04 +02:00
parent 2731ef1ada
commit 6f6ac23175
6 changed files with 264 additions and 137 deletions

View File

@ -22,7 +22,8 @@ from train import inference as ctd_inference
app = FastAPI()
# reference_pattern_path = '/home/nils/kinect_reference_cropped.png'
reference_pattern_path = '/home/nils/kinect_reference_far.png'
# reference_pattern_path = '/home/nils/kinect_reference_far.png'
reference_pattern_path = '/home/nils/mpc/kinect_downshift_rotate_left-1.png'
# reference_pattern_path = '/home/nils/kinect_diff_ref.png'
print(reference_pattern_path)
reference_pattern = cv2.imread(reference_pattern_path)

View File

@ -1,12 +1,12 @@
seed: 0
mixed_precision: true
base_lr: 4.0e-4
# base_lr: 0.00001
base_lr: 0.00025
t_max: 16100
scheduler: "cosineannealing"
nr_gpus: 3
batch_size: 3
n_total_epoch: 100
n_total_epoch: 64
minibatch_per_epoch: 500
loadmodel: ~
@ -17,17 +17,9 @@ model_save_freq_epoch: 1
max_disp: 256
image_width: 640
image_height: 480
# dataset: "blender"
# training_data_path: "./stereo_trainset/crestereo"
# training_data_path: "/media/Data1/connecting_the_dots_data/ctd_data/"
# training_data_path: "/media/Data1/connecting_the_dots_data/blender_renders/data"
training_data_path: "/media/Data1/connecting_the_dots_data/blender_renders_ctd_randomize_light/data"
# FIXME any of this??
pattern_attention: false
scene_attention: true
ignore_pattern_completely: false
test_data_path: "./eval_kinect"
data_limit: 1.
log_level: "logging.INFO"

View File

@ -239,17 +239,22 @@ class CREStereoDataset(Dataset):
class CTDDataset(Dataset):
def __init__(self, root, pattern_path: str, data_type: str = 'syn', augment=True, resize_pattern=True, blur=False, split=0.9, test_set=False, use_lightning=True):
def __init__(self, root, pattern_path: str, data_type: str = 'syn', augment=True, resize_pattern=True, blur=False, split=0.9, test_set=False, use_lightning=True, data_limit=1.):
super().__init__()
self.rng = np.random.RandomState(0)
self.augment = augment
self.blur = blur
self.use_lightning = use_lightning
imgs = glob.glob(os.path.join(root, f"{data_type}/*/im0_*.npy"), recursive=True)
if test_set:
self.data_type = data_type
imgs = glob.glob(os.path.join(root, f"{data_type if not 'syn' in root else ''}/*/im0_0*.npy"), recursive=True)
if not test_set:
self.imgs = imgs[:int(split * len(imgs))]
else:
self.imgs = imgs[int(split * len(imgs)):]
self.imgs = self.imgs[:int(data_limit * len(self.imgs))]
self.pattern = cv2.imread(pattern_path)#, cv2.IMREAD_GRAYSCALE)
if resize_pattern and self.pattern.shape != (480, 640, 3):
@ -325,9 +330,30 @@ class CTDDataset(Dataset):
class BlenderDataset(CTDDataset):
def __init__(self, root, pattern_path: str, data_type: str = 'syn', augment=True, resize_pattern=True, blur=False, split=0.9, test_set=False, use_lightning=False):
super().__init__(root, pattern_path)
def __init__(self, root, pattern_path: str, data_type: str = 'syn', augment=True, resize_pattern=True, blur=False, split=0.9, test_set=False, use_lightning=False, disp_avail=False, data_limit=1.):
super().__init__(root, pattern_path, augment=augment)
self.use_lightning = use_lightning
self.disp_avail = disp_avail
self.data_type = data_type
self.get_imgs(root, test_set, split)
self.imgs = self.imgs[:int(data_limit * len(self.imgs))]
self.pattern = cv2.imread(pattern_path)#, cv2.IMREAD_GRAYSCALE)
if resize_pattern and self.pattern.shape != (480, 640, 3):
self.pattern = downsample(self.pattern)
self.augmentor = Augmentor(
image_height=480,
image_width=640,
max_disp=256,
scale_min=0.6,
scale_max=1.0,
seed=0,
)
def get_imgs(self, root, test_set, split):
additional_img_types = {
'depth',
'disp',
@ -347,25 +373,13 @@ class BlenderDataset(CTDDataset):
self.imgs = imgs[:int(split * len(imgs))]
else:
self.imgs = imgs[int(split * len(imgs)):]
self.pattern = cv2.imread(pattern_path)#, cv2.IMREAD_GRAYSCALE)
if resize_pattern and self.pattern.shape != (480, 640, 3):
self.pattern = downsample(self.pattern)
self.augmentor = Augmentor(
image_height=480,
image_width=640,
max_disp=256,
scale_min=0.6,
scale_max=1.0,
seed=0,
)
def __getitem__(self, index):
# find path
left_path = self.imgs[index]
left_disp_path = left_path.split('.')[0] + '_disp0001.png'
left_disp_path = left_path.rsplit('.', maxsplit=1)[0] + '_disp0001.png'
if not self.disp_avail:
left_depth_path = left_path.rsplit('.', maxsplit=1)[0] + '_depth0001.png'
# read img, disp
left_img = cv2.imread(left_path)
@ -379,9 +393,23 @@ class BlenderDataset(CTDDataset):
left_img = cv2.merge([left_img, left_img, left_img]).reshape((480, 640, 3))
right_img = self.pattern
# left_disp = self.get_disp(left_disp_path)
disp = cv2.imread(left_disp_path, cv2.IMREAD_UNCHANGED)
left_disp = downsample(disp)
# In some cases, we have disparity as floats in the range [0..1]. Thus we need to upscale the values.
# 64 has been arbitrarily chosen as max_disp for this case, as this is roughly the max disparity of the CTD dataset
max_disp = 64
if not self.disp_avail:
left_disp = self.get_disp(left_depth_path)
if left_disp.max() <= 1.:
left_disp = (left_disp * max_disp).astype('uint8')
else:
try:
left_disp = cv2.imread(left_disp_path, cv2.IMREAD_UNCHANGED)
if left_disp.max() <= 1.:
left_disp = (left_disp * max_disp).astype('uint8')
if left_disp.shape != (480, 640, 3):
left_disp = downsample(left_disp)
except:
print(f'something happened, probably couldn\'t find {left_disp_path}')
if False: # self.rng.binomial(1, 0.5):
left_img, right_img = np.fliplr(right_img), np.fliplr(left_img)
@ -398,6 +426,9 @@ class BlenderDataset(CTDDataset):
_left_img, _right_img, _left_disp, disp_mask = self.augmentor(
left_img, right_img, left_disp
)
left_img = left_img.astype('float32')
right_img = right_img.astype('float32')
left_disp = left_disp.astype('float32')
else:
left_img, right_img, left_disp, disp_mask = self.augmentor(
left_img, right_img, left_disp
@ -418,14 +449,13 @@ class BlenderDataset(CTDDataset):
def get_disp(self, path):
baseline = 0.075 # meters
fl = 560. # as per CTD
depth = cv2.imread(path, cv2.IMREAD_UNCHANGED)
depth = downsample(depth)
# disp = np.load(path).transpose(1,2,0)
# disp = baseline * fl / depth
# return disp.astype(np.float32) / 32
# FIXME temporarily increase disparity until new data with better depth values is generated
# higher values seem to speedup convergence, but introduce much stronger artifacting
mystery_factor = 35
# mystery_factor = 1
disp = (baseline * fl * mystery_factor) / depth
# depth = cv2.imread(path, cv2.IMREAD_UNCHANGED)
depth = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
if depth.shape != (480, 640):
depth = downsample(depth)
disp = (baseline * fl) / depth
disp[disp == np.inf] = 0
return disp.astype(np.float32)

View File

@ -76,7 +76,7 @@ class LocalFeatureTransformer(nn.Module):
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, feat0, feat1, mask0=None, mask1=None):
def forward(self, feat0, feat1, mask0=None, mask1=None, ignore_second_feat=False):
"""
Args:
feat0 (torch.Tensor): [N, L, C]
@ -97,6 +97,9 @@ class LocalFeatureTransformer(nn.Module):
name = self.layer_names[i]
if name == 'self':
feat0 = layer(feat0, feat0, mask0, mask0)
if ignore_second_feat:
# save some compute
continue
feat1 = layer(feat1, feat1, mask1, mask1)
elif name == 'cross':
feat0 = layer(feat0, feat1, mask0, mask1)
@ -104,4 +107,6 @@ class LocalFeatureTransformer(nn.Module):
else:
raise KeyError
if ignore_second_feat:
return feat0
return feat0, feat1

View File

@ -151,7 +151,8 @@ class CREStereo(nn.Module):
# FIXME experimental ! no self-attention for pattern
if not self_attend_right:
fmap1_dw16, _ = self.self_att_fn(fmap1_dw16, fmap2_dw16)
print('skipping right attention')
fmap1_dw16 = self.self_att_fn(fmap1_dw16, fmap2_dw16, ignore_second_feat=True)
else:
fmap1_dw16, fmap2_dw16 = self.self_att_fn(fmap1_dw16, fmap2_dw16)

View File

@ -31,8 +31,22 @@ import numpy as np
import cv2
def normalize_and_colormap(img):
def normalize_and_colormap(img, reduce_dynamic_range=False):
# print(img.min())
# print(img.max())
# print(img.mean())
ret = (img - img.min()) / (img.max() - img.min()) * 255.0
# print(ret.min())
# print(ret.max())
# print(ret.mean())
# FIXME do I need to compress dynamic range somehow or something?
if reduce_dynamic_range and img.max() > 5*img.mean():
ret = (img - img.min()) / (5*img.mean() - img.min()) * 255.0
# print(ret.min())
# print(ret.max())
# print(ret.mean())
if isinstance(ret, torch.Tensor):
ret = ret.cpu().detach().numpy()
ret = ret.astype("uint8")
@ -47,34 +61,71 @@ def log_images(left, right, pred_disp, gt_disp):
if isinstance(pred_disp, list):
pred_disp = pred_disp[-1]
pred_disp = torch.squeeze(pred_disp[:, 0, :, :])
gt_disp = torch.squeeze(gt_disp[:, 0, :, :])
left = torch.squeeze(left[:, 0, :, :])
right = torch.squeeze(right[:, 0, :, :])
pred_disp = torch.squeeze(pred_disp[:, 0, :, :])
gt_disp = torch.squeeze(gt_disp[:, 0, :, :])
# print('gt_disp debug')
# print(gt_disp.shape)
singular_batch = False
if len(left.shape) == 2:
singular_batch = True
print('batch_size seems to be 1')
input_left = left.cpu().detach().numpy()
input_right = right.cpu().detach().numpy()
else:
input_left = left[batch_idx].cpu().detach().numpy()# .transpose(1,2,0)
input_right = right[batch_idx].cpu().detach().numpy()# .transpose(1,2,0)
disp = pred_disp
disp_error = gt_disp - disp
# print('gt_disp debug normalize')
# print(gt_disp.max(), gt_disp.min())
# print(gt_disp.dtype)
input_left = left[batch_idx].cpu().detach().numpy()# .transpose(1,2,0)
input_right = right[batch_idx].cpu().detach().numpy()# .transpose(1,2,0)
wandb_log = dict(
key='samples',
images=[
normalize_and_colormap(pred_disp[batch_idx]),
normalize_and_colormap(abs(disp_error[batch_idx])),
normalize_and_colormap(gt_disp[batch_idx]),
input_left,
input_right,
],
caption=[
f"Disparity \n{pred_disp[batch_idx].min():.{2}f}/{pred_disp[batch_idx].max():.{2}f}",
f"Disp. Error\n{disp_error[batch_idx].min():.{2}f}/{disp_error[batch_idx].max():.{2}f}\n{abs(disp_error[batch_idx]).mean():.{2}f}",
f"GT Disp Vis \n{gt_disp[batch_idx].min():.{2}f}/{gt_disp[batch_idx].max():.{2}f}",
"Input Left",
"Input Right"
],
)
if singular_batch:
wandb_log = dict(
key='samples',
images=[
pred_disp,
normalize_and_colormap(pred_disp),
normalize_and_colormap(abs(disp_error), reduce_dynamic_range=True),
normalize_and_colormap(gt_disp, reduce_dynamic_range=True),
input_left,
input_right,
],
caption=[
f"Disparity \n{pred_disp.min():.{2}f}/{pred_disp.max():.{2}f}",
f"Disparity (vis) \n{pred_disp.min():.{2}f}/{pred_disp.max():.{2}f}",
f"Disp. Error\n{disp_error.min():.{2}f}/{disp_error.max():.{2}f}\n{abs(disp_error).mean():.{2}f}",
f"GT Disp Vis \n{gt_disp.min():.{2}f}/{gt_disp.max():.{2}f}",
"Input Left",
"Input Right"
],
)
else:
wandb_log = dict(
key='samples',
images=[
# pred_disp.cpu().detach().numpy().transpose(1,2,0),
normalize_and_colormap(pred_disp[batch_idx]),
normalize_and_colormap(abs(disp_error[batch_idx])),
normalize_and_colormap(gt_disp[batch_idx]),
input_left,
input_right,
],
caption=[
# f"Disparity \n{pred_disp[batch_idx].min():.{2}f}/{pred_disp[batch_idx].max():.{2}f}",
f"Disparity (vis)\n{pred_disp[batch_idx].min():.{2}f}/{pred_disp[batch_idx].max():.{2}f}",
f"Disp. Error\n{disp_error[batch_idx].min():.{2}f}/{disp_error[batch_idx].max():.{2}f}\n{abs(disp_error[batch_idx]).mean():.{2}f}",
f"GT Disp Vis \n{gt_disp[batch_idx].min():.{2}f}/{gt_disp[batch_idx].max():.{2}f}",
"Input Left",
"Input Right"
],
)
return wandb_log
@ -104,7 +155,10 @@ def outlier_fraction(estimate, target, mask=None, threshold=0):
else:
mask = mask != 0
if estimate.shape != mask.shape:
raise Exception(f'estimate and mask have to be same shape (expected {estimate.shape} == {mask.shape})')
if len(mask.shape) == 3:
mask = mask[0]
if estimate.shape != mask.shape:
raise Exception(f'estimate and mask have to be same shape (expected {estimate.shape} == {mask.shape})')
return estimate, target, mask
estimate = torch.squeeze(estimate[:, 0, :, :])
target = torch.squeeze(target[:, 0, :, :])
@ -131,27 +185,9 @@ def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8, test=False):
flow_preds[0]: (B, 2, H, W)
flow_gt: (B, 2, H, W)
'''
"""
if test:
# print('sequence loss')
if valid.shape != (2, 480, 640):
valid = torch.stack([valid, valid])#.transpose(0,1)#.transpose(1,2)
# print(valid.shape)
#valid = torch.stack([valid, valid])
# print(valid.shape)
if valid.shape != (2, 480, 640):
valid = valid.transpose(0,1)
# print(valid.shape)
"""
# print(valid.shape)
# print(flow_preds[0].shape)
# print(flow_gt.shape)
n_predictions = len(flow_preds)
flow_loss = 0.0
# TEST
# flow_gt = torch.squeeze(flow_gt, dim=-1)
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = torch.abs(flow_preds[i] - flow_gt)
@ -161,38 +197,50 @@ def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8, test=False):
class CREStereoLightning(LightningModule):
def __init__(self, args, logger=None, pattern_path='', data_path=''):
def __init__(self, args, logger=None, pattern_path=''):
super().__init__()
self.batch_size = args.batch_size
self.wandb_logger = logger
self.data_type = 'blender' if 'blender' in data_path else 'ctd'
self.imwidth = args.image_width
self.imheight = args.image_height
self.data_type = 'blender' if 'blender' in args.training_data_path else 'ctd'
self.eval_type = 'kinect' if 'kinect' in args.test_data_path else args.training_data_path
self.lr = args.base_lr
print(f'lr = {self.lr}')
self.T_max = args.t_max if args.t_max else None
self.pattern_attention = args.pattern_attention
self.pattern_path = pattern_path
self.data_path = data_path
self.data_path = args.training_data_path
self.test_data_path = args.test_data_path
self.data_limit = args.data_limit # between 0 and 1.
self.model = Model(
max_disp=args.max_disp, mixed_precision=args.mixed_precision, test_mode=False
)
# so I can access it in adjust learn rate more easily
if args.scheduler == 'default':
self.automatic_optimization = False
# so I can access it in adjust learn rate more easily
self.n_total_epoch = args.n_total_epoch
self.base_lr = args.base_lr
self.automatic_optimization = False
def train_dataloader(self):
# we never train on kinect
is_kinect = False
if self.data_type == 'blender':
dataset = BlenderDataset(
root=self.data_path,
pattern_path=self.pattern_path,
use_lightning=True,
data_type='kinect' if is_kinect else 'blender',
disp_avail=not is_kinect,
data_limit = self.data_limit,
)
elif self.data_type == 'ctd':
dataset = CTDDataset(
root=self.data_path,
pattern_path=self.pattern_path,
use_lightning=True,
data_limit = self.data_limit,
)
dataloader = DataLoader(
dataset,
@ -203,16 +251,20 @@ class CREStereoLightning(LightningModule):
persistent_workers=True,
pin_memory=True,
)
# num_workers=0, drop_last=True, persistent_workers=False, pin_memory=True)
return dataloader
def val_dataloader(self):
# we also don't want to validate on kinect data
is_kinect = False
if self.data_type == 'blender':
test_dataset = BlenderDataset(
root=self.data_path,
pattern_path=self.pattern_path,
test_set=True,
use_lightning=True,
data_type='kinect' if is_kinect else 'blender',
disp_avail=not is_kinect,
data_limit = self.data_limit,
)
elif self.data_type == 'ctd':
test_dataset = CTDDataset(
@ -220,6 +272,7 @@ class CREStereoLightning(LightningModule):
pattern_path=self.pattern_path,
test_set=True,
use_lightning=True,
data_limit = self.data_limit,
)
test_dataloader = DataLoader(
@ -231,29 +284,35 @@ class CREStereoLightning(LightningModule):
persistent_workers=True,
pin_memory=True
)
# num_workers=0, drop_last=True, persistent_workers=False, pin_memory=True)
return test_dataloader
def test_dataloader(self):
# TODO change this to use IRL data?
is_kinect = self.eval_type == 'kinect'
if self.data_type == 'blender':
test_dataset = CTDDataset(
root=self.data_path,
test_dataset = BlenderDataset(
root=self.test_data_path,
pattern_path=self.pattern_path,
test_set=True,
split=0. if is_kinect else 0.9, # if we test on kinect data, use all available samples for test set
use_lightning=True,
augment=False,
disp_avail=not is_kinect,
data_type='kinect' if is_kinect else 'blender',
data_limit = self.data_limit,
)
elif self.data_type == 'ctd':
test_dataset = BlenderDataset(
root=self.data_path,
test_dataset = CTDDataset(
root=self.test_data_path,
pattern_path=self.pattern_path,
test_set=True,
use_lightning=True,
augment=False,
data_limit = self.data_limit,
)
test_dataloader = DataLoader(
test_dataset,
self.batch_size,
1 if is_kinect else self.batch_size,
shuffle=False,
num_workers=4,
drop_last=False,
@ -307,7 +366,8 @@ class CREStereoLightning(LightningModule):
self.log("outlier_fraction", of)
# print(', '.join(f'of{thr}={val}' for thr, val in of.items()))
if batch_idx % 8 == 0:
self.wandb_logger.log_image(**log_images(left, right, flow_predictions, gt_disp))
images = log_images(left, right, flow_predictions, gt_disp)
self.wandb_logger.log_image(**images)
def test_step(self, batch, batch_idx):
left, right, gt_disp, valid_mask = batch
@ -318,20 +378,28 @@ class CREStereoLightning(LightningModule):
flow_predictions, gt_flow, valid_mask, gamma=0.8
)
self.log("test_loss", test_loss)
self.wandb_logger.log_image(**log_images(left, right, flow_predictions, gt_disp))
of = {}
for threshold in [0.1, 0.5, 1, 2, 5]:
of[str(threshold)] = outlier_fraction(flow_predictions[0], gt_flow, valid_mask, threshold)
self.log("outlier_fraction", of)
images = log_images(left, right, flow_predictions, gt_disp)
images['images'].append(gt_disp)
images['caption'].append('GT Disp')
self.wandb_logger.log_image(**images)
def predict_step(self, batch, batch_idx, dataloader_idx=0):
return self(batch)
def configure_optimizers(self):
optimizer = optim.Adam(self.model.parameters(), lr=self.lr, betas=(0.9, 0.999))
print('len(self.train_dataloader)', len(self.train_dataloader()))
if not self.automatic_optimization:
return optimizer
lr_scheduler = {
'scheduler': torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=self.T_max if self.T_max else len(self.train_dataloader())/self.batch_size,
),
'name': 'CosineAnnealingLRScheduler',
'name': 'LR Scheduler',
}
return [optimizer], [lr_scheduler]
@ -356,18 +424,21 @@ class CREStereoLightning(LightningModule):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
self.log('train/lr', lr)
if __name__ == "__main__":
# wandb.init(project='crestereo-lightning')
wandb_logger = WandbLogger(project="crestereo-lightning", log_model=True)
# train configuration
args = parse_yaml("cfgs/train.yaml")
wandb_logger.experiment.config.update(args._asdict())
config = wandb.config
data_limit = config.data_limit
if 'blender' in config.training_data_path:
# this was used for our blender renders
pattern_path = '/home/nils/miniprojekt/kinect_syn_ref.png'
if 'ctd' in config.training_data_path:
elif 'ctd' in config.training_data_path:
# this one is used (i hope) for ctd
pattern_path = '/home/nils/kinect_from_settings.png'
@ -381,7 +452,6 @@ if __name__ == "__main__":
config,
wandb_logger,
pattern_path,
config.training_data_path,
# lr=0.00017378008287493763, # found with auto_lr_find=True
)
# NOTE turn this down once it's working, this might use too much space
@ -394,31 +464,59 @@ if __name__ == "__main__":
save_last=True,
)
trainer = Trainer(
accelerator='gpu',
devices=devices,
max_epochs=config.n_total_epoch,
callbacks=[
EarlyStopping(
monitor="val_loss",
mode="min",
patience=16,
),
LearningRateMonitor(),
model_checkpoint,
],
strategy=DDPSpawnStrategy(find_unused_parameters=False),
# auto_scale_batch_size='binsearch',
# auto_lr_find=True,
# accumulate_grad_batches=4, # needed to disable for manual optimization
deterministic=True,
check_val_every_n_epoch=1,
limit_val_batches=64,
limit_test_batches=256,
logger=wandb_logger,
default_root_dir=config.log_dir_lightning,
)
if config.scheduler == 'default':
trainer = Trainer(
accelerator='gpu',
devices=devices,
max_epochs=config.n_total_epoch,
callbacks=[
EarlyStopping(
monitor="val_loss",
mode="min",
patience=8,
),
LearningRateMonitor(),
model_checkpoint,
],
strategy=DDPSpawnStrategy(find_unused_parameters=False),
# auto_scale_batch_size='binsearch',
# auto_lr_find=True,
# accumulate_grad_batches=4, # needed to disable for manual optimization
deterministic=True,
check_val_every_n_epoch=1,
limit_val_batches=64,
limit_test_batches=256,
logger=wandb_logger,
default_root_dir=config.log_dir_lightning,
)
else:
trainer = Trainer(
accelerator='gpu',
devices=devices,
max_epochs=config.n_total_epoch,
callbacks=[
EarlyStopping(
monitor="val_loss",
mode="min",
patience=8,
),
LearningRateMonitor(),
model_checkpoint,
],
strategy=DDPSpawnStrategy(find_unused_parameters=False),
# auto_scale_batch_size='binsearch',
# auto_lr_find=True,
accumulate_grad_batches=4, # needed to disable for manual optimization
deterministic=True,
check_val_every_n_epoch=1,
limit_val_batches=64,
limit_test_batches=256,
logger=wandb_logger,
default_root_dir=config.log_dir_lightning,
)
# trainer.tune(model)
trainer.fit(model)
# trainer.validate(chkpt_path=model_checkpoint.best_model_path)
trainer.test(model)