test_model.py: reformat

main
Nils Koch 3 years ago
parent 17bf30fa2a
commit 9740e5d647
  1. 23
      test_model.py

@ -17,10 +17,8 @@ device = 'cuda'
wandb.init(project="crestereo", entity="cpt-captain") wandb.init(project="crestereo", entity="cpt-captain")
# Ref: https://github.com/megvii-research/CREStereo/blob/master/test.py
#Ref: https://github.com/megvii-research/CREStereo/blob/master/test.py
def inference(left, right, model, n_iter=20): def inference(left, right, model, n_iter=20):
print("Model Forwarding...") print("Model Forwarding...")
imgL = left.transpose(2, 0, 1) imgL = left.transpose(2, 0, 1)
imgR = right.transpose(2, 0, 1) imgR = right.transpose(2, 0, 1)
@ -53,7 +51,6 @@ def inference(left, right, model, n_iter=20):
def inference_ctd(left, right, gt_disp, mask, model, epoch, n_iter=20): def inference_ctd(left, right, gt_disp, mask, model, epoch, n_iter=20):
print("Model Forwarding...") print("Model Forwarding...")
# print(left.shape) # print(left.shape)
left = left.cpu().detach().numpy() left = left.cpu().detach().numpy()
@ -67,7 +64,7 @@ def inference_ctd(left, right, gt_disp, mask, model, epoch, n_iter=20):
imgL = torch.tensor(imgL.astype("float32")).to(device) imgL = torch.tensor(imgL.astype("float32")).to(device)
imgR = torch.tensor(imgR.astype("float32")).to(device) imgR = torch.tensor(imgR.astype("float32")).to(device)
imgL = imgL.transpose(2,3).transpose(1,2) imgL = imgL.transpose(2, 3).transpose(1, 2)
imgL_dw2 = F.interpolate( imgL_dw2 = F.interpolate(
imgL, imgL,
@ -111,13 +108,12 @@ def inference_ctd(left, right, gt_disp, mask, model, epoch, n_iter=20):
caption=f"Pred. Disp. Dw2 It {i}\n{pred_disp_dw2.min():.{2}f}/{pred_disp_dw2.max():.{2}f}", caption=f"Pred. Disp. Dw2 It {i}\n{pred_disp_dw2.min():.{2}f}/{pred_disp_dw2.max():.{2}f}",
) )
log['input_left'] = wandb.Image(left.astype('uint8'), caption="Input Left") log['input_left'] = wandb.Image(left.astype('uint8'), caption="Input Left")
log['input_right'] = wandb.Image(right.cpu().detach().numpy().transpose(1,2,0).astype('uint8'), caption="Input Right") log['input_right'] = wandb.Image(right.cpu().detach().numpy().transpose(1, 2, 0).astype('uint8'),
caption="Input Right")
log['gt_disp'] = wandb.Image(gt_disp, caption=f"GT Disparity\n{gt_disp.min():.{2}f}/{gt_disp.max():.{2}f}") log['gt_disp'] = wandb.Image(gt_disp, caption=f"GT Disparity\n{gt_disp.min():.{2}f}/{gt_disp.max():.{2}f}")
disp_error = gt_disp - disp disp_error = gt_disp - disp
log['disp_error'] = wandb.Image( log['disp_error'] = wandb.Image(
normalize_and_colormap(disp_error), normalize_and_colormap(disp_error),
@ -131,7 +127,7 @@ def do_infer(left_img, right_img, gt_disp, model):
in_h, in_w = left_img.shape[:2] in_h, in_w = left_img.shape[:2]
# Resize image in case the GPU memory overflows # Resize image in case the GPU memory overflows
eval_h, eval_w = (in_h,in_w) eval_h, eval_w = (in_h, in_w)
# FIXME borked for some reason, hopefully not very important # FIXME borked for some reason, hopefully not very important
@ -178,7 +174,6 @@ def do_infer(left_img, right_img, gt_disp, model):
}) })
if __name__ == '__main__': if __name__ == '__main__':
# model_path = "models/crestereo_eth3d.pth" # model_path = "models/crestereo_eth3d.pth"
model_path = "train_log/models/latest.pth" model_path = "train_log/models/latest.pth"
@ -197,7 +192,7 @@ if __name__ == '__main__':
wandb.config.update({'model_path': model_path, 'reference_pattern': reference_pattern_path, 'augment': augment}) wandb.config.update({'model_path': model_path, 'reference_pattern': reference_pattern_path, 'augment': augment})
model = Model(max_disp=256, mixed_precision=False, test_mode=True) model = Model(max_disp=256, mixed_precision=False, test_mode=True)
model = nn.DataParallel(model,device_ids=[device]) model = nn.DataParallel(model, device_ids=[device])
# model.load_state_dict(torch.load(model_path), strict=False) # model.load_state_dict(torch.load(model_path), strict=False)
state_dict = torch.load(model_path)['state_dict'] state_dict = torch.load(model_path)['state_dict']
model.load_state_dict(state_dict, strict=True) model.load_state_dict(state_dict, strict=True)
@ -211,7 +206,7 @@ if __name__ == '__main__':
in_h, in_w = left_img.shape[:2] in_h, in_w = left_img.shape[:2]
# Resize image in case the GPU memory overflows # Resize image in case the GPU memory overflows
eval_h, eval_w = (in_h,in_w) eval_h, eval_w = (in_h, in_w)
# FIXME borked for some reason, hopefully not very important # FIXME borked for some reason, hopefully not very important
imgL = cv2.resize(left_img, (eval_w, eval_h), interpolation=cv2.INTER_LINEAR) imgL = cv2.resize(left_img, (eval_w, eval_h), interpolation=cv2.INTER_LINEAR)
@ -233,7 +228,8 @@ if __name__ == '__main__':
# cv2.waitKey(0) # cv2.waitKey(0)
else: else:
dataset = CTDDataset('/media/Data1/connecting_the_dots_data/ctd_data/', data_type=data_type, pattern_path=reference_pattern_path, augment=augment) dataset = CTDDataset('/media/Data1/connecting_the_dots_data/ctd_data/', data_type=data_type,
pattern_path=reference_pattern_path, augment=augment)
dataloader = DataLoader(dataset, args.batch_size, shuffle=True, dataloader = DataLoader(dataset, args.batch_size, shuffle=True,
num_workers=0, drop_last=False, persistent_workers=False, pin_memory=True) num_workers=0, drop_last=False, persistent_workers=False, pin_memory=True)
for batch in dataloader: for batch in dataloader:
@ -245,4 +241,3 @@ if __name__ == '__main__':
imgR = right.cpu().detach().numpy() imgR = right.cpu().detach().numpy()
gt_disp = disparity gt_disp = disparity
do_infer(left_img, right_img, gt_disp, model) do_infer(left_img, right_img, gt_disp, model)

Loading…
Cancel
Save