api_server.py: report timing info, allow on the fly changing of model
This commit is contained in:
parent
7219fdef7c
commit
bb15dcd0a1
@ -1,4 +1,6 @@
|
||||
import json
|
||||
from datetime import datetime
|
||||
from typing import Union, Literal
|
||||
from io import BytesIO
|
||||
|
||||
import numpy as np
|
||||
@ -16,17 +18,27 @@ app = FastAPI()
|
||||
|
||||
reference_pattern_path = '/home/nils/kinect_reference_cropped.png'
|
||||
reference_pattern = cv2.imread(reference_pattern_path)
|
||||
model_path = "train_log/models/latest.pth"
|
||||
# model_path = "train_log/models/epoch-100.pth"
|
||||
device = torch.device('cuda')
|
||||
device = torch.device('cuda:0')
|
||||
model = None
|
||||
|
||||
|
||||
def load_model(epoch):
|
||||
global model
|
||||
epoch = f'epoch-{epoch}.pth' if epoch != 'latest' else 'latest.pth'
|
||||
model_path = f"train_log/models/{epoch}"
|
||||
model = Model(max_disp=256, mixed_precision=False, test_mode=True)
|
||||
model = nn.DataParallel(model, device_ids=[device])
|
||||
# model.load_state_dict(torch.load(model_path), strict=False)
|
||||
state_dict = torch.load(model_path)['state_dict']
|
||||
model.load_state_dict(state_dict, strict=True)
|
||||
model.to(device)
|
||||
model.eval()
|
||||
print(f'loaded model {epoch}')
|
||||
return model
|
||||
|
||||
|
||||
model = load_model('latest')
|
||||
|
||||
model = Model(max_disp=256, mixed_precision=False, test_mode=True)
|
||||
model = nn.DataParallel(model, device_ids=[device])
|
||||
# model.load_state_dict(torch.load(model_path), strict=False)
|
||||
state_dict = torch.load(model_path)['state_dict']
|
||||
model.load_state_dict(state_dict, strict=True)
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
class NumpyEncoder(json.JSONEncoder):
|
||||
def default(self, obj):
|
||||
@ -45,10 +57,9 @@ def inference(left, right, model, n_iter=20):
|
||||
imgL = torch.tensor(imgL.astype("float32")).to(device)
|
||||
imgR = torch.tensor(imgR.astype("float32")).to(device)
|
||||
|
||||
# Funzt grob
|
||||
imgR = imgR.transpose(1,2)
|
||||
imgL = imgL.transpose(1,2)
|
||||
|
||||
|
||||
imgL_dw2 = F.interpolate(
|
||||
imgL,
|
||||
size=(imgL.shape[2] // 2, imgL.shape[3] // 2),
|
||||
@ -71,6 +82,15 @@ def inference(left, right, model, n_iter=20):
|
||||
return pred_disp
|
||||
|
||||
|
||||
@app.post("/model/update/{epoch}")
|
||||
async def change_model(epoch: Union[int, Literal['latest']]):
|
||||
global model
|
||||
print(epoch)
|
||||
print('updating model')
|
||||
model = load_model(epoch)
|
||||
return {'status': 'success'}
|
||||
|
||||
|
||||
@app.put("/ir")
|
||||
async def read_ir_input(file: UploadFile = File(...)):
|
||||
try:
|
||||
@ -89,11 +109,15 @@ async def read_ir_input(file: UploadFile = File(...)):
|
||||
img = img.transpose((1,2,0))
|
||||
ref_pat = reference_pattern.transpose((1,2,0))
|
||||
|
||||
pred_disp = inference(img, ref_pat, model)
|
||||
start = datetime.now()
|
||||
pred_disp = inference(img, ref_pat, model, 20)
|
||||
duration = (datetime.now() - start).total_seconds()
|
||||
|
||||
return json.dumps({'disp': pred_disp, 'reference': ref_pat, 'input': img}, cls=NumpyEncoder)
|
||||
return json.dumps({'disp': pred_disp, 'reference': ref_pat, 'input': img, 'duration': duration}, cls=NumpyEncoder)
|
||||
# return json.dumps({'disp': pred_disp, 'duration': duration}, cls=NumpyEncoder)
|
||||
|
||||
|
||||
@app.get('/')
|
||||
def main():
|
||||
return {'test': 'abc'}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user