import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import cv2 from nets import Model import wandb from torch.utils.data import DataLoader from dataset import CTDDataset from train import normalize_and_colormap, parse_yaml, inference as ctd_inference device = 'cuda' wandb.init(project="crestereo", entity="cpt-captain") def do_infer(left_img, right_img, gt_disp, model): disp = ctd_inference(left_img, right_img, gt_disp, None, model, None, n_iter=20, wandb_log=False) disp_vis = normalize_and_colormap(disp) gt_disp_vis = normalize_and_colormap(gt_disp) if gt_disp.shape != disp.shape: gt_disp = gt_disp.reshape(disp.shape) disp_err = gt_disp - disp disp_err = normalize_and_colormap(disp_err.abs()) wandb.log({ 'disp': wandb.Image( disp, caption=f"Pred. Disparity \n{disp.min():.{2}f}/{disp.max():.{2}f}", ), 'disp_vis': wandb.Image( disp_vis, caption=f"Pred. Disparity \n{disp.min():.{2}f}/{disp.max():.{2}f}", ), 'gt_disp_vis': wandb.Image( gt_disp_vis, caption=f"GT Disparity \n{gt_disp.min():.{2}f}/{gt_disp.max():.{2}f}", ), 'disp_err': wandb.Image( disp_err, caption=f"Disparity Error\n{disp_err.min():.{2}f}/{disp_err.max():.{2}f}", ), 'input_left': wandb.Image( left_img.cpu().detach().numpy().astype('uint8'), caption=f"Input left", ), 'input_right': wandb.Image( right_img.cpu().detach().numpy().astype('uint8'), caption=f"Input right", ), }) if __name__ == '__main__': # model_path = "models/crestereo_eth3d.pth" model_path = "train_log/models/latest.pth" # reference_pattern_path = '/home/nils/kinect_reference_high_res_scaled_down.png' reference_pattern_path = '/home/nils/kinect_reference_cropped.png' # reference_pattern_path = '/home/nils/new_reference.png' # reference_pattern_path = '/home/nils/kinect_reference_high_res.png' # reference_pattern_path = '/home/nils/orig_ctd/connecting_the_dots/data/kinect_pattern.png' data_type = 'kinect' augment = False args = parse_yaml("cfgs/train.yaml") wandb.config.update({'model_path': model_path, 'reference_pattern': reference_pattern_path, 'augment': augment}) model = Model(max_disp=256, mixed_precision=False, test_mode=True) model = nn.DataParallel(model, device_ids=[device]) state_dict = torch.load(model_path)['state_dict'] model.load_state_dict(state_dict, strict=True) model.to(device) model.eval() dataset = CTDDataset('/media/Data1/connecting_the_dots_data/ctd_data/', data_type=data_type, pattern_path=reference_pattern_path, augment=augment) dataloader = DataLoader(dataset, args.batch_size, shuffle=True, num_workers=0, drop_last=False, persistent_workers=False, pin_memory=True) for batch in dataloader: for left, right, disparity in zip(batch['left'], batch['right'], batch['disparity']): right = right.transpose(0, 2).transpose(0, 1) left_img = left imgL = left.cpu().detach().numpy() right_img = right imgR = right.cpu().detach().numpy() gt_disp = disparity do_infer(left_img, right_img, gt_disp, model)