CREStereo Repository for the 'Towards accurate and robust depth estimation' project
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

44 lines
1.3 KiB

import pickle
import numpy as np
import megengine as mge
import torch
import torch.nn.functional as F
def bilinear_sampler(img, coords, mode='bilinear', mask=False):
""" Wrapper for grid_sample, uses pixel coordinates """
H, W = img.shape[-2:]
xgrid, ygrid = coords.split([1,1], dim=-1)
xgrid = 2*xgrid/(W-1) - 1
ygrid = 2*ygrid/(H-1) - 1
grid = torch.cat([xgrid, ygrid], dim=-1)
img = F.grid_sample(img, grid, align_corners=True)
if mask:
mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
return img, mask.float()
return img
def test_bilinear_sampler():
# Getting back the megengine objects:
with open('test_data/bilinear_sampler_test.pickle', 'rb') as f:
right_feature_prev, coords, right_feature = pickle.load(f)
right_feature_prev = torch.tensor(right_feature_prev.numpy())
coords = torch.tensor(coords.numpy())
right_feature = right_feature.numpy()
# Test Pytorch
right_feature_pytorch = bilinear_sampler(right_feature_prev, coords).numpy()
error = np.mean(right_feature_pytorch-right_feature)
print(f"test_coords_grid - Avg. Error: {error}, \n \
Original shape: {coords.numpy().shape},\n \
Obtained shape: {right_feature_pytorch.shape}, Expected shape: {right_feature.shape}")
if __name__ == '__main__':
test_bilinear_sampler()