CREStereo Repository for the 'Towards accurate and robust depth estimation' project
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
CREStereo-pytorch-nxt/nets/extractor.py

123 lines
4.0 KiB

import torch
import torch.nn as nn
import torch.nn.functional as F
# Ref: https://github.com/princeton-vl/RAFT/blob/master/core/extractor.py
class ResidualBlock(nn.Module):
def __init__(self, in_planes, planes, norm_fn='group', stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)
self.relu = nn.ReLU(inplace=True)
num_groups = planes // 8
if norm_fn == 'group':
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
elif norm_fn == 'batch':
self.norm1 = nn.BatchNorm2d(planes)
self.norm2 = nn.BatchNorm2d(planes)
self.norm3 = nn.BatchNorm2d(planes)
elif norm_fn == 'instance':
self.norm1 = nn.InstanceNorm2d(planes, affine=False)
self.norm2 = nn.InstanceNorm2d(planes, affine=False)
self.norm3 = nn.InstanceNorm2d(planes, affine=False)
elif norm_fn == 'none':
self.norm1 = nn.Sequential()
self.norm2 = nn.Sequential()
self.norm3 = nn.Sequential()
self.downsample = nn.Sequential(
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)
def forward(self, x):
y = x
y = self.relu(self.norm1(self.conv1(y)))
y = self.relu(self.norm2(self.conv2(y)))
x = self.downsample(x)
return self.relu(x+y)
class BasicEncoder(nn.Module):
def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0):
super(BasicEncoder, self).__init__()
self.norm_fn = norm_fn
if self.norm_fn == 'group':
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64)
elif self.norm_fn == 'batch':
self.norm1 = nn.BatchNorm2d(64)
elif self.norm_fn == 'instance':
self.norm1 = nn.InstanceNorm2d(64, affine=False)
elif self.norm_fn == 'none':
self.norm1 = nn.Sequential()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.relu1 = nn.ReLU(inplace=True)
self.in_planes = 64
self.layer1 = self._make_layer(64, stride=1)
self.layer2 = self._make_layer(96, stride=2)
self.layer3 = self._make_layer(128, stride=1)
# output convolution
self.conv2 = nn.Conv2d(128, output_dim, kernel_size=1)
self.dropout = None
if dropout > 0:
self.dropout = nn.Dropout2d(p=dropout)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
if m.weight is not None:
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def _make_layer(self, dim, stride=1):
layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride)
layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1)
layers = (layer1, layer2)
self.in_planes = dim
return nn.Sequential(*layers)
def forward(self, x):
# if input is list, combine batch dimension
is_list = isinstance(x, tuple) or isinstance(x, list)
if is_list:
batch_dim = x[0].shape[0]
x = torch.cat(x, dim=0)
x = self.conv1(x)
x = self.norm1(x)
x = self.relu1(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.conv2(x)
if self.dropout is not None:
x = self.dropout(x)
if is_list:
x = torch.split(x, x.shape[0]//2, dim=0)
return x