You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
113 lines
3.3 KiB
113 lines
3.3 KiB
import requests
|
|
from cv2 import cv2
|
|
import numpy as np
|
|
import json
|
|
import os
|
|
|
|
from datetime import datetime
|
|
|
|
API_URL = 'http://127.0.0.1:8000'
|
|
|
|
img_dir = '../../usable_imgs/'
|
|
|
|
cv2.namedWindow('Input Image')
|
|
cv2.namedWindow('Predicted Disparity')
|
|
|
|
|
|
# epoch 75 ist weird
|
|
|
|
|
|
class NumpyEncoder(json.JSONEncoder):
|
|
def default(self, obj):
|
|
if isinstance(obj, np.ndarray):
|
|
return obj.tolist()
|
|
return json.JSONEncoder.default(self, obj)
|
|
|
|
|
|
def normalize_and_colormap(img):
|
|
ret = (img - img.min()) / (img.max() - img.min()) * 255.0
|
|
ret = ret.astype("uint8")
|
|
ret = cv2.applyColorMap(ret, cv2.COLORMAP_INFERNO)
|
|
return ret
|
|
|
|
|
|
def change_epoch():
|
|
epoch = input('Enter epoch number or "latest"\n')
|
|
r = requests.post(f'{API_URL}/model/update/{epoch}')
|
|
print(r.text)
|
|
|
|
|
|
def extract_data(data):
|
|
# FIXME yuck, don't json the json
|
|
duration = data['duration']
|
|
|
|
# get result and rotate 90 deg
|
|
pred_disp = cv2.transpose(np.asarray(data['disp'], dtype='uint8'))
|
|
|
|
if 'input' not in data:
|
|
return pred_disp, duration
|
|
|
|
in_img = np.asarray(data['input'], dtype='uint8').transpose((2, 0, 1))
|
|
ref_pat = np.asarray(data['reference'], dtype='uint8').transpose((2, 0, 1))
|
|
return pred_disp, in_img, ref_pat, duration
|
|
|
|
|
|
def downsize_input_img():
|
|
input_img = cv2.imread(img.path)
|
|
if input_img.shape == (1024, 1280, 3):
|
|
diff = (512 - 480) // 2
|
|
downsampled = cv2.pyrDown(input_img)
|
|
input_img = downsampled[diff:downsampled.shape[0] - diff, 0:downsampled.shape[1]]
|
|
|
|
cv2.imwrite('buffer.png', input_img)
|
|
|
|
|
|
def put_image(img_path):
|
|
openBin = {'file': ('file', open(img_path, 'rb'), 'image/png')}
|
|
print('sending image')
|
|
r = requests.put(f'{API_URL}/ir', files=openBin)
|
|
print('received response')
|
|
r.raise_for_status()
|
|
data = json.loads(json.loads(r.text))
|
|
return data
|
|
|
|
|
|
def change_minimal_data(enabled):
|
|
r = requests.post(f'{API_URL}/params/minimal_data/{not enabled}')
|
|
cv2.destroyWindow('Input Image')
|
|
cv2.destroyWindow('Reference Image')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
while True:
|
|
for img in os.scandir(img_dir):
|
|
start = datetime.now()
|
|
if 'ir' not in img.path:
|
|
continue
|
|
|
|
# alternatively: use img.path for native size
|
|
downsize_input_img()
|
|
|
|
data = put_image('buffer.png')
|
|
if 'input' in data:
|
|
pred_disp, in_img, ref_pat, duration = extract_data(data)
|
|
else:
|
|
pred_disp, duration = extract_data(data)
|
|
|
|
print(f'inference took {duration:1.4f}s')
|
|
print(f'pipeline and transfer took another {(datetime.now() - start).total_seconds() - float(duration):1.4f}s')
|
|
print(f"Pred. Disparity: \n\t{pred_disp.min():.{2}f}/{pred_disp.max():.{2}f}\n")
|
|
|
|
if 'input' in data:
|
|
cv2.imshow('Input Image', in_img)
|
|
cv2.imshow('Reference Image', ref_pat)
|
|
cv2.imshow('Normalized Predicted Disparity', normalize_and_colormap(pred_disp))
|
|
cv2.imshow('Predicted Disparity', pred_disp)
|
|
key = cv2.waitKey()
|
|
|
|
if key == 113:
|
|
quit()
|
|
elif key == 101:
|
|
change_epoch()
|
|
elif key == 109:
|
|
change_minimal_data('input' not in data)
|
|
|