You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
connecting_the_dots/hyperdepth/hyperdepth.pyx

87 lines
3.4 KiB

6 years ago
cimport cython
import numpy as np
cimport numpy as np
from libc.stdlib cimport free, malloc
from libcpp cimport bool
from libcpp.string cimport string
from cpython cimport PyObject, Py_INCREF
CREATE_INIT = True # workaround, so cython builds a init function
np.import_array()
ctypedef unsigned char uint8_t
cdef extern from "rf/train.h":
cdef cppclass TrainParameters:
int n_trees;
int max_tree_depth;
int n_test_split_functions;
int n_test_thresholds;
int n_test_samples;
int min_samples_to_split;
int min_samples_for_leaf;
int print_node_info;
TrainParameters();
cdef extern from "hyperdepth.h":
void train(int row_from, int row_to, TrainParameters params, const uint8_t* ims, const float* disps, int n, int h, int w, int n_disp_bins, int depth_switch, int n_threads, string forest_prefix);
void eval(int row_from, int row_to, const uint8_t* ims, const float* disps, int n, int h, int w, int n_disp_bins, int depth_switch, int n_threads, string forest_prefix, float* out);
cdef class TrainParams:
cdef TrainParameters params;
def __cinit__(self, int n_trees=6, int max_tree_depth=8, int n_test_split_functions=50, int n_test_thresholds=10, int n_test_samples=4096, int min_samples_to_split=16, int min_samples_for_leaf=8, int print_node_info=100):
self.params.n_trees = n_trees
self.params.max_tree_depth = max_tree_depth
self.params.n_test_split_functions = n_test_split_functions
self.params.n_test_thresholds = n_test_thresholds
self.params.n_test_samples = n_test_samples
self.params.min_samples_to_split = min_samples_to_split
self.params.min_samples_for_leaf = min_samples_for_leaf
self.params.print_node_info = print_node_info
def __str__(self):
return f'n_trees={self.params.n_trees}, max_tree_depth={self.params.max_tree_depth}, n_test_split_functions={self.params.n_test_split_functions}, n_test_thresholds={self.params.n_test_thresholds}, n_test_samples={self.params.n_test_samples}, min_samples_to_split={self.params.min_samples_to_split}, min_samples_for_leaf={self.params.min_samples_for_leaf}'
def train_forest(TrainParams params, uint8_t[:,:,::1] ims, float[:,:,::1] disps, int n_disp_bins=10, int depth_switch=0, int n_threads=18, str forest_prefix='forest', int row_from=-1, int row_to=-1):
cdef int n = ims.shape[0]
cdef int h = ims.shape[1]
cdef int w = ims.shape[2]
if row_from < 0:
row_from = 0
if row_to > h or row_to < 0:
row_to = h
if n != disps.shape[0] or h != disps.shape[1] or w != disps.shape[2]:
raise Exception('ims.shape != disps.shape')
train(row_from, row_to, params.params, &ims[0,0,0], &disps[0,0,0], n, h, w, n_disp_bins, depth_switch, n_threads, forest_prefix.encode())
def eval_forest(uint8_t[:,:,::1] ims, float[:,:,::1] disps, int n_disp_bins=10, int depth_switch=0, int n_threads=18, str forest_prefix='forest', int row_from=-1, int row_to=-1):
cdef int n = ims.shape[0]
cdef int h = ims.shape[1]
cdef int w = ims.shape[2]
if n != disps.shape[0] or h != disps.shape[1] or w != disps.shape[2]:
raise Exception('ims.shape != disps.shape')
if row_from < 0:
row_from = 0
if row_to > h or row_to < 0:
row_to = h
out = np.empty((n, h, w, 3), dtype=np.float32)
cdef float[:,:,:,::1] out_view = out
eval(row_from, row_to, &ims[0,0,0], &disps[0,0,0], n, h, w, n_disp_bins, depth_switch, n_threads, forest_prefix.encode(), &out_view[0,0,0,0])
return out