Add wandb, make batch and image size configurable, fix some bugs, improve supervised loss function

master
Cpt.Captain 3 years ago
parent cebf776714
commit b7dbc59c25
  1. 66
      model/exp_synph.py

@ -10,6 +10,7 @@ import matplotlib.pyplot as plt
import cv2
import torchvision.transforms as transforms
import wandb
import co
import torchext
@ -18,28 +19,33 @@ from data import dataset
class Worker(torchext.Worker):
def __init__(self, args, num_workers=18, train_batch_size=4, test_batch_size=4, save_frequency=1, **kwargs):
def __init__(self, args, num_workers=18, train_batch_size=6, test_batch_size=6, save_frequency=1, **kwargs):
if 'batch_size' in dir(args):
train_batch_size = args.batch_size
test_batch_size = args.batch_size
super().__init__(args.output_dir, args.exp_name, epochs=args.epochs, num_workers=num_workers,
train_batch_size=train_batch_size, test_batch_size=test_batch_size,
save_frequency=save_frequency, **kwargs)
self.ms = args.ms
self.pattern_path = args.pattern_path
self.lcn_radius = args.lcn_radius
self.dp_weight = args.dp_weight
self.data_type = args.data_type
self.imsizes = [(488, 648)]
for iter in range(3):
self.imsizes.append((int(self.imsizes[-1][0] / 2), int(self.imsizes[-1][1] / 2)))
with open('config.json') as fp:
config = json.load(fp)
data_root = Path(config['DATA_ROOT'])
self.imsizes = [tuple(map(int, config['IMSIZE'].split(',')))]
for iter in range(3):
self.imsizes.append((int(self.imsizes[-1][0] / 2), int(self.imsizes[-1][1] / 2)))
self.settings_path = data_root / self.data_type / 'settings.pkl'
sample_paths = sorted((data_root / self.data_type).glob('0*/'))
self.train_paths = sample_paths[2 ** 10:]
# FIXME just for testing, make this bigger at some point
# self.train_paths = sample_paths[2 ** 3:]
self.test_paths = sample_paths[:2 ** 8]
# supervise the edge encoder with only 2**8 samples
@ -51,6 +57,25 @@ class Worker(torchext.Worker):
self.sup_disp_loss = torch.nn.MSELoss()
self.edge_loss = torch.nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([0.1]).to(self.train_device))
# FIXME L2 Regularization, try it!!
# l2_lambda = 0.001
# l2_norm = sum(p.pow(2.0).sum()
# for p in net.parameters())
# self.sup_disp_loss = torch.nn.MSELoss() + l2_lambda * l2_norm
# FIXME try using log of this loss, otherwise it's very large compared to others
# self.sup_disp_loss = torch.nn.MSELoss()
class RMSLELoss(torch.nn.Module):
def __init__(self):
super().__init__()
self.mse = torch.nn.MSELoss()
def forward(self, pred, actual):
# FIXME rename this if log is better than sqrt
return torch.log(self.mse(pred, actual))
# return torch.sqrt(self.mse(torch.log(pred + 1), torch.log(actual + 1)))
self.sup_disp_loss = RMSLELoss()
# evaluate in the region where opencv Block Matching has valid values
self.eval_mask = np.zeros(self.imsizes[0])
self.eval_mask[13:self.imsizes[0][0] - 13, 140:self.imsizes[0][1] - 13] = 1
@ -108,6 +133,7 @@ class Worker(torchext.Worker):
def loss_forward(self, out, train):
out, edge = out
losses = {}
if not (isinstance(out, tuple) or isinstance(out, list)):
out = [out]
if not (isinstance(edge, tuple) or isinstance(edge, list)):
@ -118,11 +144,11 @@ class Worker(torchext.Worker):
# apply photometric loss
for s, l, o in zip(itertools.count(), self.losses, out):
val, pattern_proj = l(o[0], self.data[f'im{s}'][:, 0:1, ...], self.data[f'std{s}'])
if s == 0:
self.pattern_proj = pattern_proj.detach()
vals.append(val)
# apply disparity loss
losses['photometric'] = val
# 1-edge as ground truth edge if inversed
if isinstance(edge, tuple):
edge0 = 1 - torch.sigmoid(edge[0][0])
@ -130,11 +156,18 @@ class Worker(torchext.Worker):
edge0 = 1 - torch.sigmoid(edge[0])
val = 0
if isinstance(out[0], tuple):
sup_loss = self.sup_disp_loss(out[0][1], self.data['disp0'])
val += sup_loss
disp_loss = self.disparity_loss(out[0][0], edge0)
val += disp_loss
val += self.sup_disp_loss(out[0][1], self.data['disp0'])
val += self.disparity_loss(out[0][0], edge0)
losses['GT Supervised disparity loss'] = sup_loss * self.dp_weight
losses['OG disparity loss'] = disp_loss * self.dp_weight
else:
val += self.disparity_loss(out[0], edge0)
disp_loss = self.disparity_loss(out[0], edge0)
val += disp_loss
losses['OG disparity loss'] = disp_loss * self.dp_weight
if self.dp_weight > 0:
vals.append(val * self.dp_weight)
@ -159,15 +192,20 @@ class Worker(torchext.Worker):
self.edge = e.detach()
self.edge = torch.sigmoid(self.edge)
self.edge_gt = grad.detach()
losses['edge'] = val
vals.append(val)
wandb.log(losses)
return vals
def numpy_in_out(self, output):
output, edge = output
if not (isinstance(output, tuple) or isinstance(output, list)):
output = [output]
if isinstance(output[0], tuple):
es = output[0][0].detach().to('cpu').numpy()
else:
es = output[0].detach().to('cpu').numpy()
gt = self.data['disp0'].to('cpu').numpy().astype(np.float32)
im = self.data['im0'][:, 0:1, ...].detach().to('cpu').numpy()
@ -250,6 +288,7 @@ class Worker(torchext.Worker):
plt.tight_layout()
plt.savefig(str(out_path))
wandb.log({f'results_{"_".join(out_path.stem.split("_")[:-1])}': plt})
plt.close(fig)
def callback_train_post_backward(self, net, errs, output, epoch, batch_idx, masks=[]):
@ -293,9 +332,4 @@ class Worker(torchext.Worker):
if __name__ == '__main__':
# FIXME Nicolas fixe idee
# SGBM nutzen, um GT zu finden
# bei dispnet (oder w/e) letzte paar layer 'dublizieren' (zweiten head bauen) und so mehrere Loss funktionen gleichzeitig trainieren
# L1 + L2 und dann im selben Backwardspass optimieren
# für das ganze forward pass anpassen
pass

Loading…
Cancel
Save