Add wandb, make batch and image size configurable, fix some bugs, improve supervised loss function, make use of some RL stuff just implemented
This commit is contained in:
parent
b7dbc59c25
commit
e3303cf9d4
@ -10,6 +10,7 @@ import matplotlib.pyplot as plt
|
||||
import cv2
|
||||
import torchvision.transforms as transforms
|
||||
|
||||
import wandb
|
||||
|
||||
import co
|
||||
import torchext
|
||||
@ -18,32 +19,39 @@ from data import dataset
|
||||
|
||||
|
||||
class Worker(torchext.Worker):
|
||||
def __init__(self, args, num_workers=18, train_batch_size=4, test_batch_size=4, save_frequency=1, **kwargs):
|
||||
def __init__(self, args, num_workers=18, train_batch_size=6, test_batch_size=6, save_frequency=1, **kwargs):
|
||||
if 'batch_size' in dir(args):
|
||||
train_batch_size = args.batch_size
|
||||
test_batch_size = args.batch_size
|
||||
super().__init__(args.output_dir, args.exp_name, epochs=args.epochs, num_workers=num_workers,
|
||||
train_batch_size=train_batch_size, test_batch_size=test_batch_size,
|
||||
save_frequency=save_frequency, **kwargs)
|
||||
|
||||
self.ms = args.ms
|
||||
self.pattern_path = args.pattern_path
|
||||
self.lcn_radius = args.lcn_radius
|
||||
self.dp_weight = args.dp_weight
|
||||
self.data_type = args.data_type
|
||||
|
||||
self.imsizes = [(488, 648)]
|
||||
for iter in range(3):
|
||||
self.imsizes.append((int(self.imsizes[-1][0] / 2), int(self.imsizes[-1][1] / 2)))
|
||||
|
||||
with open('config.json') as fp:
|
||||
config = json.load(fp)
|
||||
data_root = Path(config['DATA_ROOT'])
|
||||
self.imsizes = [tuple(map(int, config['IMSIZE'].split(',')))]
|
||||
|
||||
for iter in range(3):
|
||||
self.imsizes.append((int(self.imsizes[-1][0] / 2), int(self.imsizes[-1][1] / 2)))
|
||||
|
||||
self.settings_path = data_root / self.data_type / 'settings.pkl'
|
||||
sample_paths = sorted((data_root / self.data_type).glob('0*/'))
|
||||
|
||||
self.train_paths = sample_paths[2 ** 10:]
|
||||
self.test_paths = sample_paths[:2 ** 8]
|
||||
# calc split
|
||||
# since we don't have a lot or RL footage, we compute it as we go
|
||||
train_size = len(sample_paths) * 0.8 // 1
|
||||
test_size = 1 - train_size
|
||||
self.train_paths = sample_paths[test_size:]
|
||||
self.test_paths = sample_paths[:train_size]
|
||||
|
||||
# supervise the edge encoder with only 2**8 samples
|
||||
self.train_edge = len(self.train_paths) - 2 ** 8
|
||||
# don't just supervise the edge encoder with only 2**8 samples
|
||||
self.train_edge = len(self.train_paths)
|
||||
|
||||
self.lcn_in = networks.LCN(self.lcn_radius, 0.05)
|
||||
self.disparity_loss = networks.DisparityLoss()
|
||||
@ -51,6 +59,25 @@ class Worker(torchext.Worker):
|
||||
self.sup_disp_loss = torch.nn.MSELoss()
|
||||
self.edge_loss = torch.nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([0.1]).to(self.train_device))
|
||||
|
||||
# FIXME L2 Regularization, try it!!
|
||||
# l2_lambda = 0.001
|
||||
# l2_norm = sum(p.pow(2.0).sum()
|
||||
# for p in net.parameters())
|
||||
# self.sup_disp_loss = torch.nn.MSELoss() + l2_lambda * l2_norm
|
||||
# FIXME try using log of this loss, otherwise it's very large compared to others
|
||||
# self.sup_disp_loss = torch.nn.MSELoss()
|
||||
class RMSLELoss(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.mse = torch.nn.MSELoss()
|
||||
|
||||
def forward(self, pred, actual):
|
||||
# FIXME rename this if log is better than sqrt
|
||||
return torch.log(self.mse(pred, actual))
|
||||
# return torch.sqrt(self.mse(torch.log(pred + 1), torch.log(actual + 1)))
|
||||
|
||||
self.sup_disp_loss = RMSLELoss()
|
||||
|
||||
# evaluate in the region where opencv Block Matching has valid values
|
||||
self.eval_mask = np.zeros(self.imsizes[0])
|
||||
self.eval_mask[13:self.imsizes[0][0] - 13, 140:self.imsizes[0][1] - 13] = 1
|
||||
@ -59,14 +86,13 @@ class Worker(torchext.Worker):
|
||||
self.eval_w = self.imsizes[0][1] - 13 - 140
|
||||
|
||||
def get_train_set(self):
|
||||
train_set = dataset.TrackSynDataset(self.settings_path, self.train_paths, train=True, data_aug=True,
|
||||
train_set = dataset.RealWorldDataset(self.settings_path, self.train_paths, train=True, data_aug=True,
|
||||
track_length=1)
|
||||
|
||||
return train_set
|
||||
|
||||
def get_test_sets(self):
|
||||
test_sets = torchext.TestSets()
|
||||
test_set = dataset.TrackSynDataset(self.settings_path, self.test_paths, train=False, data_aug=True,
|
||||
test_set = dataset.RealWorldDataset(self.settings_path, self.test_paths, train=False, data_aug=True,
|
||||
track_length=1)
|
||||
test_sets.append('simple', test_set, test_frequency=1)
|
||||
|
||||
@ -102,12 +128,12 @@ class Worker(torchext.Worker):
|
||||
self.data[key_std] = im_std.to(device).detach()
|
||||
|
||||
def net_forward(self, net, train):
|
||||
# FIXME hier schnibbeln?
|
||||
out = net(self.data['im0'])
|
||||
return out
|
||||
|
||||
def loss_forward(self, out, train):
|
||||
out, edge = out
|
||||
losses = {}
|
||||
if not (isinstance(out, tuple) or isinstance(out, list)):
|
||||
out = [out]
|
||||
if not (isinstance(edge, tuple) or isinstance(edge, list)):
|
||||
@ -118,23 +144,30 @@ class Worker(torchext.Worker):
|
||||
# apply photometric loss
|
||||
for s, l, o in zip(itertools.count(), self.losses, out):
|
||||
val, pattern_proj = l(o[0], self.data[f'im{s}'][:, 0:1, ...], self.data[f'std{s}'])
|
||||
|
||||
if s == 0:
|
||||
self.pattern_proj = pattern_proj.detach()
|
||||
vals.append(val)
|
||||
|
||||
# apply disparity loss
|
||||
# 1-edge as ground truth edge if inversed
|
||||
losses['photometric'] = val
|
||||
# 1-edge as ground truth edge if inverted
|
||||
if isinstance(edge, tuple):
|
||||
edge0 = 1 - torch.sigmoid(edge[0][0])
|
||||
else:
|
||||
edge0 = 1 - torch.sigmoid(edge[0])
|
||||
val = 0
|
||||
if isinstance(out[0], tuple):
|
||||
# NOTE use supervised disparity loss
|
||||
val += self.sup_disp_loss(out[0][1], self.data['disp0'])
|
||||
val += self.disparity_loss(out[0][0], edge0)
|
||||
sup_loss = self.sup_disp_loss(out[0][1], self.data['disp0'])
|
||||
val += sup_loss
|
||||
|
||||
disp_loss = self.disparity_loss(out[0][0], edge0)
|
||||
val += disp_loss
|
||||
|
||||
losses['GT Supervised disparity loss'] = sup_loss * self.dp_weight
|
||||
losses['OG disparity loss'] = disp_loss * self.dp_weight
|
||||
else:
|
||||
val += self.disparity_loss(out[0], edge0)
|
||||
disp_loss = self.disparity_loss(out[0], edge0)
|
||||
val += disp_loss
|
||||
losses['OG disparity loss'] = disp_loss * self.dp_weight
|
||||
if self.dp_weight > 0:
|
||||
vals.append(val * self.dp_weight)
|
||||
|
||||
@ -159,15 +192,20 @@ class Worker(torchext.Worker):
|
||||
self.edge = e.detach()
|
||||
self.edge = torch.sigmoid(self.edge)
|
||||
self.edge_gt = grad.detach()
|
||||
losses['edge'] = val
|
||||
vals.append(val)
|
||||
|
||||
wandb.log(losses)
|
||||
return vals
|
||||
|
||||
def numpy_in_out(self, output):
|
||||
output, edge = output
|
||||
if not (isinstance(output, tuple) or isinstance(output, list)):
|
||||
output = [output]
|
||||
es = output[0][0].detach().to('cpu').numpy()
|
||||
if isinstance(output[0], tuple):
|
||||
es = output[0][0].detach().to('cpu').numpy()
|
||||
else:
|
||||
es = output[0].detach().to('cpu').numpy()
|
||||
gt = self.data['disp0'].to('cpu').numpy().astype(np.float32)
|
||||
im = self.data['im0'][:, 0:1, ...].detach().to('cpu').numpy()
|
||||
|
||||
@ -250,6 +288,7 @@ class Worker(torchext.Worker):
|
||||
|
||||
plt.tight_layout()
|
||||
plt.savefig(str(out_path))
|
||||
wandb.log({f'results_{"_".join(out_path.stem.split("_")[:-1])}': plt})
|
||||
plt.close(fig)
|
||||
|
||||
def callback_train_post_backward(self, net, errs, output, epoch, batch_idx, masks=[]):
|
||||
@ -293,9 +332,4 @@ class Worker(torchext.Worker):
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# FIXME Nicolas fixe idee
|
||||
# SGBM nutzen, um GT zu finden
|
||||
# bei dispnet (oder w/e) letzte paar layer 'dublizieren' (zweiten head bauen) und so mehrere Loss funktionen gleichzeitig trainieren
|
||||
# L1 + L2 und dann im selben Backwardspass optimieren
|
||||
# für das ganze forward pass anpassen
|
||||
pass
|
||||
|
Loading…
Reference in New Issue
Block a user