Remove unnecessary code from torchext

This commit is contained in:
CptCaptain 2021-12-13 17:34:28 +01:00
parent efac1b4dea
commit f193f8d601
8 changed files with 0 additions and 1232 deletions

View File

@ -1,10 +0,0 @@
#ifndef TYPES_H
#define TYPES_H
#ifdef __CUDA_ARCH__
#define CPU_GPU_FUNCTION __host__ __device__
#else
#define CPU_GPU_FUNCTION
#endif
#endif

View File

@ -1,135 +0,0 @@
#ifndef COMMON_H
#define COMMON_H
#include "co_types.h"
#include <cmath>
#include <algorithm>
#if defined(_OPENMP)
#include <omp.h>
#endif
#define DISABLE_COPY_AND_ASSIGN(classname) \
private:\
classname(const classname&) = delete;\
classname& operator=(const classname&) = delete;
template <typename T>
CPU_GPU_FUNCTION
void fill(T* arr, int N, T val) {
for(int idx = 0; idx < N; ++idx) {
arr[idx] = val;
}
}
template <typename T>
CPU_GPU_FUNCTION
void fill_zero(T* arr, int N) {
for(int idx = 0; idx < N; ++idx) {
arr[idx] = 0;
}
}
template <typename T>
CPU_GPU_FUNCTION
inline T distance_euclidean(const T* q, const T* t, int N) {
T out = 0;
for(int idx = 0; idx < N; idx++) {
T diff = q[idx] - t[idx];
out += diff * diff;
}
return out;
}
template <typename T>
CPU_GPU_FUNCTION
inline T distance_l2(const T* q, const T* t, int N) {
T out = distance_euclidean(q, t, N);
out = std::sqrt(out);
return out;
}
template <typename T>
struct FillFunctor {
T* arr;
const T val;
FillFunctor(T* arr, const T val) : arr(arr), val(val) {}
CPU_GPU_FUNCTION void operator()(const int idx) {
arr[idx] = val;
}
};
template <typename T>
CPU_GPU_FUNCTION
T mmin(const T& a, const T& b) {
#ifdef __CUDA_ARCH__
return min(a, b);
#else
return std::min(a, b);
#endif
}
template <typename T>
CPU_GPU_FUNCTION
T mmax(const T& a, const T& b) {
#ifdef __CUDA_ARCH__
return max(a, b);
#else
return std::max(a, b);
#endif
}
template <typename T>
CPU_GPU_FUNCTION
T mround(const T& a) {
#ifdef __CUDA_ARCH__
return round(a);
#else
return round(a);
#endif
}
#ifdef __CUDA_ARCH__
#if __CUDA_ARCH__ < 600
__device__ double atomicAdd(double* address, double val)
{
unsigned long long int* address_as_ull =
(unsigned long long int*)address;
unsigned long long int old = *address_as_ull, assumed;
do {
assumed = old;
old = atomicCAS(address_as_ull, assumed,
__double_as_longlong(val +
__longlong_as_double(assumed)));
// Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
} while (assumed != old);
return __longlong_as_double(old);
}
#endif
#endif
template <typename T>
CPU_GPU_FUNCTION
void matomic_add(T* addr, T val) {
#ifdef __CUDA_ARCH__
atomicAdd(addr, val);
#else
#if defined(_OPENMP)
#pragma omp atomic
#endif
*addr += val;
#endif
}
#endif

View File

@ -1,173 +0,0 @@
#ifndef COMMON_CUDA
#define COMMON_CUDA
#include <cublas_v2.h>
#include <stdio.h>
#define DEBUG 0
#define CUDA_DEBUG_DEVICE_SYNC 0
// cuda check for cudaMalloc and so on
#define CUDA_CHECK(condition) \
/* Code block avoids redefinition of cudaError_t error */ \
do { \
if(CUDA_DEBUG_DEVICE_SYNC) { cudaDeviceSynchronize(); } \
cudaError_t error = condition; \
if(error != cudaSuccess) { \
printf("%s in %s at %d\n", cudaGetErrorString(error), __FILE__, __LINE__); \
exit(-1); \
} \
} while (0)
/// Get error string for error code.
/// @param error
inline const char* cublasGetErrorString(cublasStatus_t error) {
switch (error) {
case CUBLAS_STATUS_SUCCESS:
return "CUBLAS_STATUS_SUCCESS";
case CUBLAS_STATUS_NOT_INITIALIZED:
return "CUBLAS_STATUS_NOT_INITIALIZED";
case CUBLAS_STATUS_ALLOC_FAILED:
return "CUBLAS_STATUS_ALLOC_FAILED";
case CUBLAS_STATUS_INVALID_VALUE:
return "CUBLAS_STATUS_INVALID_VALUE";
case CUBLAS_STATUS_ARCH_MISMATCH:
return "CUBLAS_STATUS_ARCH_MISMATCH";
case CUBLAS_STATUS_MAPPING_ERROR:
return "CUBLAS_STATUS_MAPPING_ERROR";
case CUBLAS_STATUS_EXECUTION_FAILED:
return "CUBLAS_STATUS_EXECUTION_FAILED";
case CUBLAS_STATUS_INTERNAL_ERROR:
return "CUBLAS_STATUS_INTERNAL_ERROR";
case CUBLAS_STATUS_NOT_SUPPORTED:
return "CUBLAS_STATUS_NOT_SUPPORTED";
case CUBLAS_STATUS_LICENSE_ERROR:
return "CUBLAS_STATUS_LICENSE_ERROR";
}
return "Unknown cublas status";
}
#define CUBLAS_CHECK(condition) \
do { \
if(CUDA_DEBUG_DEVICE_SYNC) { cudaDeviceSynchronize(); } \
cublasStatus_t status = condition; \
if(status != CUBLAS_STATUS_SUCCESS) { \
printf("%s in %s at %d\n", cublasGetErrorString(status), __FILE__, __LINE__); \
exit(-1); \
} \
} while (0)
// check if there is a error after kernel execution
#define CUDA_POST_KERNEL_CHECK \
CUDA_CHECK(cudaPeekAtLastError()); \
CUDA_CHECK(cudaGetLastError());
#define CUDA_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); i += blockDim.x * gridDim.x)
const int CUDA_NUM_THREADS = 1024;
inline int GET_BLOCKS(const int N, const int N_THREADS=CUDA_NUM_THREADS) {
return (N + N_THREADS - 1) / N_THREADS;
}
template<typename T>
T* device_malloc(long N) {
T* dptr;
CUDA_CHECK(cudaMalloc(&dptr, N * sizeof(T)));
if(DEBUG) { printf("[DEBUG] device_malloc %p, %ld\n", dptr, N); }
return dptr;
}
template<typename T>
void device_free(T* dptr) {
if(DEBUG) { printf("[DEBUG] device_free %p\n", dptr); }
CUDA_CHECK(cudaFree(dptr));
}
template<typename T>
void host_to_device(const T* hptr, T* dptr, long N) {
if(DEBUG) { printf("[DEBUG] host_to_device %p => %p, %ld\n", hptr, dptr, N); }
CUDA_CHECK(cudaMemcpy(dptr, hptr, N * sizeof(T), cudaMemcpyHostToDevice));
}
template<typename T>
T* host_to_device_malloc(const T* hptr, long N) {
T* dptr = device_malloc<T>(N);
host_to_device(hptr, dptr, N);
return dptr;
}
template<typename T>
void device_to_host(const T* dptr, T* hptr, long N) {
if(DEBUG) { printf("[DEBUG] device_to_host %p => %p, %ld\n", dptr, hptr, N); }
CUDA_CHECK(cudaMemcpy(hptr, dptr, N * sizeof(T), cudaMemcpyDeviceToHost));
}
template<typename T>
T* device_to_host_malloc(const T* dptr, long N) {
T* hptr = new T[N];
device_to_host(dptr, hptr, N);
return hptr;
}
template<typename T>
void device_to_device(const T* dptr, T* hptr, long N) {
if(DEBUG) { printf("[DEBUG] device_to_device %p => %p, %ld\n", dptr, hptr, N); }
CUDA_CHECK(cudaMemcpy(hptr, dptr, N * sizeof(T), cudaMemcpyDeviceToDevice));
}
// https://github.com/parallel-forall/code-samples/blob/master/posts/cuda-aware-mpi-example/src/Device.cu
// https://github.com/treecode/Bonsai/blob/master/runtime/profiling/derived_atomic_functions.h
__device__ __forceinline__ void atomicMaxF(float * const address, const float value) {
if (*address >= value) {
return;
}
int * const address_as_i = (int *)address;
int old = * address_as_i, assumed;
do {
assumed = old;
if (__int_as_float(assumed) >= value) {
break;
}
old = atomicCAS(address_as_i, assumed, __float_as_int(value));
} while (assumed != old);
}
__device__ __forceinline__ void atomicMinF(float * const address, const float value) {
if (*address <= value) {
return;
}
int * const address_as_i = (int *)address;
int old = * address_as_i, assumed;
do {
assumed = old;
if (__int_as_float(assumed) <= value) {
break;
}
old = atomicCAS(address_as_i, assumed, __float_as_int(value));
} while (assumed != old);
}
template <typename FunctorT>
__global__ void iterate_kernel(FunctorT functor, int N) {
CUDA_KERNEL_LOOP(idx, N) {
functor(idx);
}
}
template <typename FunctorT>
void iterate_cuda(FunctorT functor, int N, int N_THREADS=CUDA_NUM_THREADS) {
iterate_kernel<<<GET_BLOCKS(N, N_THREADS), N_THREADS>>>(functor, N);
CUDA_POST_KERNEL_CHECK;
}
#endif

View File

@ -1,347 +0,0 @@
#pragma once
#include "common.h"
#define CHECK_CUDA(x) AT_ASSERTM(x.type().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT_CPU(x) CHECK_CONTIGUOUS(x)
#define CHECK_INPUT_CUDA(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
template <typename T, int dim=3>
struct NNFunctor {
const T* in0; // nelem0 x dim
const T* in1; // nelem1 x dim
const long nelem0;
const long nelem1;
long* out; // nelem0
NNFunctor(const T* in0, const T* in1, long nelem0, long nelem1, long* out) : in0(in0), in1(in1), nelem0(nelem0), nelem1(nelem1), out(out) {}
CPU_GPU_FUNCTION void operator()(long idx0) {
// idx0 \in [nelem0]
const T* vec0 = in0 + idx0 * dim;
T min_dist = 1e9;
long min_arg = -1;
for(long idx1 = 0; idx1 < nelem1; ++idx1) {
const T* vec1 = in1 + idx1 * dim;
T dist = 0;
for(long didx = 0; didx < dim; ++didx) {
T diff = vec0[didx] - vec1[didx];
dist += diff * diff;
}
if(dist < min_dist) {
min_dist = dist;
min_arg = idx1;
}
}
out[idx0] = min_arg;
}
};
struct CrossCheckFunctor {
const long* in0; // nelem0
const long* in1; // nelem1
const long nelem0;
const long nelem1;
uint8_t* out; // nelem0
CrossCheckFunctor(const long* in0, const long* in1, long nelem0, long nelem1, uint8_t* out) : in0(in0), in1(in1), nelem0(nelem0), nelem1(nelem1), out(out) {}
CPU_GPU_FUNCTION void operator()(long idx0) {
// idx0 \in [nelem0]
int idx1 = in0[idx0];
out[idx0] = idx1 >=0 && in1[idx1] >= 0 && idx0 == in1[idx1];
// out[idx0] = idx0 == in1[in0[idx0]];
}
};
template <typename T, int dim=3>
struct ProjNNFunctor {
// xyz0, xyz1 in coord sys of 1
const T* xyz0; // bs x height x width x 3
const T* xyz1; // bs x height x width x 3
const T* K; // 3 x 3
const long batch_size;
const long height;
const long width;
const long patch_size;
long* out; // bs x height x width
ProjNNFunctor(const T* xyz0, const T* xyz1, const T* K, long batch_size, long height, long width, long patch_size, long* out)
: xyz0(xyz0), xyz1(xyz1), K(K), batch_size(batch_size), height(height), width(width), patch_size(patch_size), out(out) {}
CPU_GPU_FUNCTION void operator()(long idx0) {
// idx0 \in [0, bs x height x width]
const long bs = idx0 / (height * width);
const T x = xyz0[idx0 * 3 + 0];
const T y = xyz0[idx0 * 3 + 1];
const T z = xyz0[idx0 * 3 + 2];
const T d = K[6] * x + K[7] * y + K[8] * z;
const T u = (K[0] * x + K[1] * y + K[2] * z) / d;
const T v = (K[3] * x + K[4] * y + K[5] * z) / d;
int u0 = u + 0.5;
int v0 = v + 0.5;
long min_idx1 = -1;
T min_dist = 1e9;
for(int pidx = 0; pidx < patch_size*patch_size; ++pidx) {
int pu = pidx % patch_size;
int pv = pidx / patch_size;
int u1 = u0 + pu - patch_size/2;
int v1 = v0 + pv - patch_size/2;
if(u1 >= 0 && v1 >= 0 && u1 < width && v1 < height) {
const long idx1 = (bs * height + v1) * width + u1;
const T* xyz1n = xyz1 + idx1 * 3;
const T d = (x-xyz1n[0]) * (x-xyz1n[0]) + (y-xyz1n[1]) * (y-xyz1n[1]) + (z-xyz1n[2]) * (z-xyz1n[2]);
if(d < min_dist) {
min_dist = d;
min_idx1 = idx1;
}
}
}
out[idx0] = min_idx1;
}
};
template <typename T, int dim=3>
struct XCorrVolFunctor {
const T* in0; // channels x height x width
const T* in1; // channels x height x width
const long channels;
const long height;
const long width;
const long n_disps;
const long block_size;
T* out; // nelem0
XCorrVolFunctor(const T* in0, const T* in1, long channels, long height, long width, long n_disps, long block_size, T* out) : in0(in0), in1(in1), channels(channels), height(height), width(width), n_disps(n_disps), block_size(block_size), out(out) {}
CPU_GPU_FUNCTION void operator()(long oidx) {
// idx0 \in [n_disps x height x width]
auto d = oidx / (height * width);
auto h = (oidx / width) % height;
auto w = oidx % width;
long block_size2 = block_size * block_size;
T val = 0;
for(int c = 0; c < channels; ++c) {
// compute means
T mu0 = 0;
T mu1 = 0;
for(int bh = 0; bh < block_size; ++bh) {
long h0 = h + bh - block_size / 2;
h0 = mmax(long(0), mmin(height-1, h0));
for(int bw = 0; bw < block_size; ++bw) {
long w0 = w + bw - block_size / 2;
long w1 = w0 - d;
w0 = mmax(long(0), mmin(width-1, w0));
w1 = mmax(long(0), mmin(width-1, w1));
long idx0 = (c * height + h0) * width + w0;
long idx1 = (c * height + h0) * width + w1;
mu0 += in0[idx0] / block_size2;
mu1 += in1[idx1] / block_size2;
}
}
// compute stds and dot product
T sigma0 = 0;
T sigma1 = 0;
T dot = 0;
for(int bh = 0; bh < block_size; ++bh) {
long h0 = h + bh - block_size / 2;
h0 = mmax(long(0), mmin(height-1, h0));
for(int bw = 0; bw < block_size; ++bw) {
long w0 = w + bw - block_size / 2;
long w1 = w0 - d;
w0 = mmax(long(0), mmin(width-1, w0));
w1 = mmax(long(0), mmin(width-1, w1));
long idx0 = (c * height + h0) * width + w0;
long idx1 = (c * height + h0) * width + w1;
T v0 = in0[idx0] - mu0;
T v1 = in1[idx1] - mu1;
dot += v0 * v1;
sigma0 += v0 * v0;
sigma1 += v1 * v1;
}
}
T norm = sqrt(sigma0 * sigma1) + 1e-8;
val += dot / norm;
}
out[oidx] = val;
}
};
const int PHOTOMETRIC_LOSS_MSE = 0;
const int PHOTOMETRIC_LOSS_SAD = 1;
const int PHOTOMETRIC_LOSS_CENSUS_MSE = 2;
const int PHOTOMETRIC_LOSS_CENSUS_SAD = 3;
template <typename T, int type>
struct PhotometricLossForward {
const T* es; // batch_size x channels x height x width;
const T* ta;
const int block_size;
const int block_size2;
const T eps;
const int batch_size;
const int channels;
const int height;
const int width;
T* out; // batch_size x channels x height x width;
PhotometricLossForward(const T* es, const T* ta, int block_size, T eps, int batch_size, int channels, int height, int width, T* out) :
es(es), ta(ta), block_size(block_size), block_size2(block_size*block_size), eps(eps), batch_size(batch_size), channels(channels), height(height), width(width), out(out) {}
CPU_GPU_FUNCTION void operator()(int outidx) {
// outidx \in [0, batch_size x height x width]
int w = outidx % width;
int h = (outidx / width) % height;
int n = outidx / (height * width);
T loss = 0;
for(int bidx = 0; bidx < block_size2; ++bidx) {
int bh = bidx / block_size;
int bw = bidx % block_size;
int h0 = h + bh - block_size / 2;
int w0 = w + bw - block_size / 2;
h0 = mmin(height-1, mmax(0, h0));
w0 = mmin(width-1, mmax(0, w0));
for(int c = 0; c < channels; ++c) {
int inidx = ((n * channels + c) * height + h0) * width + w0;
if(type == PHOTOMETRIC_LOSS_SAD || type == PHOTOMETRIC_LOSS_MSE) {
T diff = es[inidx] - ta[inidx];
if(type == PHOTOMETRIC_LOSS_MSE) {
loss += diff * diff / block_size2;
}
else if(type == PHOTOMETRIC_LOSS_SAD) {
loss += fabs(diff) / block_size2;
}
}
else if(type == PHOTOMETRIC_LOSS_CENSUS_SAD || type == PHOTOMETRIC_LOSS_CENSUS_MSE) {
int inidxc = ((n * channels + c) * height + h) * width + w;
T des = es[inidx] - es[inidxc];
T dta = ta[inidx] - ta[inidxc];
T h_des = 0.5 * (1 + des / sqrt(des * des + eps));
T h_dta = 0.5 * (1 + dta / sqrt(dta * dta + eps));
T diff = h_des - h_dta;
// printf("%d,%d %d,%d: des=%f, dta=%f, h_des=%f, h_dta=%f, diff=%f\n", h,w, h0,w0, des,dta, h_des,h_dta, diff);
// printf("%d,%d %d,%d: h_des=%f = 0.5 * (1 + %f / %f); %f, %f, %f\n", h,w, h0,w0, h_des, des, sqrt(des * des + eps), des*des, des*des+eps, eps);
if(type == PHOTOMETRIC_LOSS_CENSUS_MSE) {
loss += diff * diff / block_size2;
}
else if(type == PHOTOMETRIC_LOSS_CENSUS_SAD) {
loss += fabs(diff) / block_size2;
}
}
}
}
out[outidx] = loss;
}
};
template <typename T, int type>
struct PhotometricLossBackward {
const T* es; // batch_size x channels x height x width;
const T* ta;
const T* grad_out;
const int block_size;
const int block_size2;
const T eps;
const int batch_size;
const int channels;
const int height;
const int width;
T* grad_in; // batch_size x channels x height x width;
PhotometricLossBackward(const T* es, const T* ta, const T* grad_out, int block_size, T eps, int batch_size, int channels, int height, int width, T* grad_in) :
es(es), ta(ta), grad_out(grad_out), block_size(block_size), block_size2(block_size*block_size), eps(eps), batch_size(batch_size), channels(channels), height(height), width(width), grad_in(grad_in) {}
CPU_GPU_FUNCTION void operator()(int outidx) {
// outidx \in [0, batch_size x height x width]
int w = outidx % width;
int h = (outidx / width) % height;
int n = outidx / (height * width);
for(int bidx = 0; bidx < block_size2; ++bidx) {
int bh = bidx / block_size;
int bw = bidx % block_size;
int h0 = h + bh - block_size / 2;
int w0 = w + bw - block_size / 2;
h0 = mmin(height-1, mmax(0, h0));
w0 = mmin(width-1, mmax(0, w0));
const T go = grad_out[outidx];
for(int c = 0; c < channels; ++c) {
int inidx = ((n * channels + c) * height + h0) * width + w0;
if(type == PHOTOMETRIC_LOSS_SAD || type == PHOTOMETRIC_LOSS_MSE) {
T diff = es[inidx] - ta[inidx];
T grad = 0;
if(type == PHOTOMETRIC_LOSS_MSE) {
grad = 2 * diff;
}
else if(type == PHOTOMETRIC_LOSS_SAD) {
grad = diff < 0 ? -1 : (diff > 0 ? 1 : 0);
}
grad = grad / block_size2 * go;
matomic_add(grad_in + inidx, grad);
}
else if(type == PHOTOMETRIC_LOSS_CENSUS_SAD || type == PHOTOMETRIC_LOSS_CENSUS_MSE) {
int inidxc = ((n * channels + c) * height + h) * width + w;
T des = es[inidx] - es[inidxc];
T dta = ta[inidx] - ta[inidxc];
T h_des = 0.5 * (1 + des / sqrt(des * des + eps));
T h_dta = 0.5 * (1 + dta / sqrt(dta * dta + eps));
T diff = h_des - h_dta;
T grad_loss = 0;
if(type == PHOTOMETRIC_LOSS_CENSUS_MSE) {
grad_loss = 2 * diff;
}
else if(type == PHOTOMETRIC_LOSS_CENSUS_SAD) {
grad_loss = diff < 0 ? -1 : (diff > 0 ? 1 : 0);
}
grad_loss = grad_loss / block_size2;
T tmp = des * des + eps;
T grad_heaviside = 0.5 * eps / sqrt(tmp * tmp * tmp);
T grad = go * grad_loss * grad_heaviside;
matomic_add(grad_in + inidx, grad);
matomic_add(grad_in + inidxc, -grad);
}
}
}
}
};

View File

@ -1,198 +0,0 @@
#include <torch/extension.h>
#include <iostream>
#include "ext.h"
template <typename FunctorT>
void iterate_cpu(FunctorT functor, int N) {
for(int idx = 0; idx < N; ++idx) {
functor(idx);
}
}
at::Tensor nn_cpu(at::Tensor in0, at::Tensor in1) {
CHECK_INPUT_CPU(in0);
CHECK_INPUT_CPU(in1);
auto nelem0 = in0.size(0);
auto nelem1 = in1.size(0);
auto dim = in0.size(1);
AT_ASSERTM(dim == in1.size(1), "in0 and in1 have to be the same shape");
AT_ASSERTM(dim == 3, "dim hast to be 3");
AT_ASSERTM(in0.dim() == 2, "in0 has to be N0 x 3");
AT_ASSERTM(in1.dim() == 2, "in1 has to be N1 x 3");
auto out = at::empty({nelem0}, torch::CPU(at::kLong));
AT_DISPATCH_FLOATING_TYPES(in0.scalar_type(), "nn", ([&] {
iterate_cpu(
NNFunctor<scalar_t>(in0.data<scalar_t>(), in1.data<scalar_t>(), nelem0, nelem1, out.data<long>()),
nelem0);
}));
return out;
}
at::Tensor crosscheck_cpu(at::Tensor in0, at::Tensor in1) {
CHECK_INPUT_CPU(in0);
CHECK_INPUT_CPU(in1);
AT_ASSERTM(in0.dim() == 1, "");
AT_ASSERTM(in1.dim() == 1, "");
auto nelem0 = in0.size(0);
auto nelem1 = in1.size(0);
auto out = at::empty({nelem0}, torch::CPU(at::kByte));
iterate_cpu(
CrossCheckFunctor(in0.data<long>(), in1.data<long>(), nelem0, nelem1, out.data<uint8_t>()),
nelem0);
return out;
}
at::Tensor proj_nn_cpu(at::Tensor xyz0, at::Tensor xyz1, at::Tensor K, int patch_size) {
CHECK_INPUT_CPU(xyz0);
CHECK_INPUT_CPU(xyz1);
CHECK_INPUT_CPU(K);
auto batch_size = xyz0.size(0);
auto height = xyz0.size(1);
auto width = xyz0.size(2);
AT_ASSERTM(xyz0.size(0) == xyz1.size(0), "");
AT_ASSERTM(xyz0.size(1) == xyz1.size(1), "");
AT_ASSERTM(xyz0.size(2) == xyz1.size(2), "");
AT_ASSERTM(xyz0.size(3) == xyz1.size(3), "");
AT_ASSERTM(xyz0.size(3) == 3, "");
AT_ASSERTM(xyz0.dim() == 4, "");
AT_ASSERTM(xyz1.dim() == 4, "");
auto out = at::empty({batch_size, height, width}, torch::CPU(at::kLong));
AT_DISPATCH_FLOATING_TYPES(xyz0.scalar_type(), "proj_nn", ([&] {
iterate_cpu(
ProjNNFunctor<scalar_t>(xyz0.data<scalar_t>(), xyz1.data<scalar_t>(), K.data<scalar_t>(), batch_size, height, width, patch_size, out.data<long>()),
batch_size * height * width);
}));
return out;
}
at::Tensor xcorrvol_cpu(at::Tensor in0, at::Tensor in1, int n_disps, int block_size) {
CHECK_INPUT_CPU(in0);
CHECK_INPUT_CPU(in1);
auto channels = in0.size(0);
auto height = in0.size(1);
auto width = in0.size(2);
auto out = at::empty({n_disps, height, width}, in0.options());
AT_DISPATCH_FLOATING_TYPES(in0.scalar_type(), "xcorrvol", ([&] {
iterate_cpu(
XCorrVolFunctor<scalar_t>(in0.data<scalar_t>(), in1.data<scalar_t>(), channels, height, width, n_disps, block_size, out.data<scalar_t>()),
n_disps * height * width);
}));
return out;
}
at::Tensor photometric_loss_forward(at::Tensor es, at::Tensor ta, int block_size, int type, float eps) {
CHECK_INPUT_CPU(es);
CHECK_INPUT_CPU(ta);
auto batch_size = es.size(0);
auto channels = es.size(1);
auto height = es.size(2);
auto width = es.size(3);
auto out = at::empty({batch_size, 1, height, width}, es.options());
AT_DISPATCH_FLOATING_TYPES(es.scalar_type(), "photometric_loss_forward_cpu", ([&] {
if(type == PHOTOMETRIC_LOSS_MSE) {
iterate_cpu(
PhotometricLossForward<scalar_t, PHOTOMETRIC_LOSS_MSE>(es.data<scalar_t>(), ta.data<scalar_t>(), block_size, eps, batch_size, channels, height, width, out.data<scalar_t>()),
out.numel());
}
else if(type == PHOTOMETRIC_LOSS_SAD) {
iterate_cpu(
PhotometricLossForward<scalar_t, PHOTOMETRIC_LOSS_SAD>(es.data<scalar_t>(), ta.data<scalar_t>(), block_size, eps, batch_size, channels, height, width, out.data<scalar_t>()),
out.numel());
}
else if(type == PHOTOMETRIC_LOSS_CENSUS_MSE) {
iterate_cpu(
PhotometricLossForward<scalar_t, PHOTOMETRIC_LOSS_CENSUS_MSE>(es.data<scalar_t>(), ta.data<scalar_t>(), block_size, eps, batch_size, channels, height, width, out.data<scalar_t>()),
out.numel());
}
else if(type == PHOTOMETRIC_LOSS_CENSUS_SAD) {
iterate_cpu(
PhotometricLossForward<scalar_t, PHOTOMETRIC_LOSS_CENSUS_SAD>(es.data<scalar_t>(), ta.data<scalar_t>(), block_size, eps, batch_size, channels, height, width, out.data<scalar_t>()),
out.numel());
}
}));
return out;
}
at::Tensor photometric_loss_backward(at::Tensor es, at::Tensor ta, at::Tensor grad_out, int block_size, int type, float eps) {
CHECK_INPUT_CPU(es);
CHECK_INPUT_CPU(ta);
CHECK_INPUT_CPU(grad_out);
auto batch_size = es.size(0);
auto channels = es.size(1);
auto height = es.size(2);
auto width = es.size(3);
CHECK_INPUT_CPU(ta);
auto grad_in = at::zeros({batch_size, channels, height, width}, grad_out.options());
AT_DISPATCH_FLOATING_TYPES(es.scalar_type(), "photometric_loss_backward_cpu", ([&] {
if(type == PHOTOMETRIC_LOSS_MSE) {
iterate_cpu(
PhotometricLossBackward<scalar_t, PHOTOMETRIC_LOSS_MSE>(es.data<scalar_t>(), ta.data<scalar_t>(), grad_out.data<scalar_t>(), block_size, eps, batch_size, channels, height, width, grad_in.data<scalar_t>()),
grad_out.numel());
}
else if(type == PHOTOMETRIC_LOSS_SAD) {
iterate_cpu(
PhotometricLossBackward<scalar_t, PHOTOMETRIC_LOSS_SAD>(es.data<scalar_t>(), ta.data<scalar_t>(), grad_out.data<scalar_t>(), block_size, eps, batch_size, channels, height, width, grad_in.data<scalar_t>()),
grad_out.numel());
}
else if(type == PHOTOMETRIC_LOSS_CENSUS_MSE) {
iterate_cpu(
PhotometricLossBackward<scalar_t, PHOTOMETRIC_LOSS_CENSUS_MSE>(es.data<scalar_t>(), ta.data<scalar_t>(), grad_out.data<scalar_t>(), block_size, eps, batch_size, channels, height, width, grad_in.data<scalar_t>()),
grad_out.numel());
}
else if(type == PHOTOMETRIC_LOSS_CENSUS_SAD) {
iterate_cpu(
PhotometricLossBackward<scalar_t, PHOTOMETRIC_LOSS_CENSUS_SAD>(es.data<scalar_t>(), ta.data<scalar_t>(), grad_out.data<scalar_t>(), block_size, eps, batch_size, channels, height, width, grad_in.data<scalar_t>()),
grad_out.numel());
}
}));
return grad_in;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("nn_cpu", &nn_cpu, "nn_cpu");
m.def("crosscheck_cpu", &crosscheck_cpu, "crosscheck_cpu");
m.def("proj_nn_cpu", &proj_nn_cpu, "proj_nn_cpu");
m.def("xcorrvol_cpu", &xcorrvol_cpu, "xcorrvol_cpu");
m.def("photometric_loss_forward", &photometric_loss_forward);
m.def("photometric_loss_backward", &photometric_loss_backward);
}

View File

@ -1,135 +0,0 @@
#include <torch/extension.h>
#include <iostream>
#include "ext.h"
void nn_kernel(at::Tensor in0, at::Tensor in1, at::Tensor out);
at::Tensor nn_cuda(at::Tensor in0, at::Tensor in1) {
CHECK_INPUT_CUDA(in0);
CHECK_INPUT_CUDA(in1);
auto nelem0 = in0.size(0);
auto dim = in0.size(1);
AT_ASSERTM(dim == in1.size(1), "in0 and in1 have to be the same shape");
AT_ASSERTM(dim == 3, "dim hast to be 3");
AT_ASSERTM(in0.dim() == 2, "in0 has to be N0 x 3");
AT_ASSERTM(in1.dim() == 2, "in1 has to be N1 x 3");
auto out = at::empty({nelem0}, torch::CUDA(at::kLong));
nn_kernel(in0, in1, out);
return out;
}
void crosscheck_kernel(at::Tensor in0, at::Tensor in1, at::Tensor out);
at::Tensor crosscheck_cuda(at::Tensor in0, at::Tensor in1) {
CHECK_INPUT_CUDA(in0);
CHECK_INPUT_CUDA(in1);
AT_ASSERTM(in0.dim() == 1, "");
AT_ASSERTM(in1.dim() == 1, "");
auto nelem0 = in0.size(0);
auto out = at::empty({nelem0}, torch::CUDA(at::kByte));
crosscheck_kernel(in0, in1, out);
return out;
}
void proj_nn_kernel(at::Tensor xyz0, at::Tensor xyz1, at::Tensor K, int patch_size, at::Tensor out);
at::Tensor proj_nn_cuda(at::Tensor xyz0, at::Tensor xyz1, at::Tensor K, int patch_size) {
CHECK_INPUT_CUDA(xyz0);
CHECK_INPUT_CUDA(xyz1);
CHECK_INPUT_CUDA(K);
auto batch_size = xyz0.size(0);
auto height = xyz0.size(1);
auto width = xyz0.size(2);
AT_ASSERTM(xyz0.size(0) == xyz1.size(0), "");
AT_ASSERTM(xyz0.size(1) == xyz1.size(1), "");
AT_ASSERTM(xyz0.size(2) == xyz1.size(2), "");
AT_ASSERTM(xyz0.size(3) == xyz1.size(3), "");
AT_ASSERTM(xyz0.size(3) == 3, "");
AT_ASSERTM(xyz0.dim() == 4, "");
AT_ASSERTM(xyz1.dim() == 4, "");
auto out = at::empty({batch_size, height, width}, torch::CUDA(at::kLong));
proj_nn_kernel(xyz0, xyz1, K, patch_size, out);
return out;
}
void xcorrvol_kernel(at::Tensor in0, at::Tensor in1, int n_disps, int block_size, at::Tensor out);
at::Tensor xcorrvol_cuda(at::Tensor in0, at::Tensor in1, int n_disps, int block_size) {
CHECK_INPUT_CUDA(in0);
CHECK_INPUT_CUDA(in1);
// auto channels = in0.size(0);
auto height = in0.size(1);
auto width = in0.size(2);
auto out = at::empty({n_disps, height, width}, in0.options());
xcorrvol_kernel(in0, in1, n_disps, block_size, out);
return out;
}
void photometric_loss_forward_kernel(at::Tensor es, at::Tensor ta, int block_size, int type, float eps, at::Tensor out);
at::Tensor photometric_loss_forward(at::Tensor es, at::Tensor ta, int block_size, int type, float eps) {
CHECK_INPUT_CUDA(es);
CHECK_INPUT_CUDA(ta);
auto batch_size = es.size(0);
auto height = es.size(2);
auto width = es.size(3);
auto out = at::empty({batch_size, 1, height, width}, es.options());
photometric_loss_forward_kernel(es, ta, block_size, type, eps, out);
return out;
}
void photometric_loss_backward_kernel(at::Tensor es, at::Tensor ta, at::Tensor grad_out, int block_size, int type, float eps, at::Tensor grad_in);
at::Tensor photometric_loss_backward(at::Tensor es, at::Tensor ta, at::Tensor grad_out, int block_size, int type, float eps) {
CHECK_INPUT_CUDA(es);
CHECK_INPUT_CUDA(ta);
CHECK_INPUT_CUDA(grad_out);
auto batch_size = es.size(0);
auto channels = es.size(1);
auto height = es.size(2);
auto width = es.size(3);
auto grad_in = at::zeros({batch_size, channels, height, width}, grad_out.options());
photometric_loss_backward_kernel(es, ta, grad_out, block_size, type, eps, grad_in);
return grad_in;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("nn_cuda", &nn_cuda, "nn_cuda");
m.def("crosscheck_cuda", &crosscheck_cuda, "crosscheck_cuda");
m.def("proj_nn_cuda", &proj_nn_cuda, "proj_nn_cuda");
m.def("xcorrvol_cuda", &xcorrvol_cuda, "xcorrvol_cuda");
m.def("photometric_loss_forward", &photometric_loss_forward);
m.def("photometric_loss_backward", &photometric_loss_backward);
}

View File

@ -1,112 +0,0 @@
#include <ATen/ATen.h>
#include "ext.h"
#include "common_cuda.h"
void nn_kernel(at::Tensor in0, at::Tensor in1, at::Tensor out) {
auto nelem0 = in0.size(0);
auto nelem1 = in1.size(0);
auto dim = in0.size(1);
AT_DISPATCH_FLOATING_TYPES(in0.scalar_type(), "nn", ([&] {
iterate_cuda(
NNFunctor<scalar_t>(in0.data<scalar_t>(), in1.data<scalar_t>(), nelem0, nelem1, out.data<long>()),
nelem0);
}));
}
void crosscheck_kernel(at::Tensor in0, at::Tensor in1, at::Tensor out) {
auto nelem0 = in0.size(0);
auto nelem1 = in1.size(0);
iterate_cuda(
CrossCheckFunctor(in0.data<long>(), in1.data<long>(), nelem0, nelem1, out.data<uint8_t>()),
nelem0);
}
void proj_nn_kernel(at::Tensor xyz0, at::Tensor xyz1, at::Tensor K, int patch_size, at::Tensor out) {
auto batch_size = xyz0.size(0);
auto height = xyz0.size(1);
auto width = xyz0.size(2);
AT_DISPATCH_FLOATING_TYPES(xyz0.scalar_type(), "proj_nn", ([&] {
iterate_cuda(
ProjNNFunctor<scalar_t>(xyz0.data<scalar_t>(), xyz1.data<scalar_t>(), K.data<scalar_t>(), batch_size, height, width, patch_size, out.data<long>()),
batch_size * height * width);
}));
}
void xcorrvol_kernel(at::Tensor in0, at::Tensor in1, int n_disps, int block_size, at::Tensor out) {
auto channels = in0.size(0);
auto height = in0.size(1);
auto width = in0.size(2);
AT_DISPATCH_FLOATING_TYPES(in0.scalar_type(), "xcorrvol", ([&] {
iterate_cuda(
XCorrVolFunctor<scalar_t>(in0.data<scalar_t>(), in1.data<scalar_t>(), channels, height, width, n_disps, block_size, out.data<scalar_t>()),
n_disps * height * width, 512);
}));
}
void photometric_loss_forward_kernel(at::Tensor es, at::Tensor ta, int block_size, int type, float eps, at::Tensor out) {
auto batch_size = es.size(0);
auto channels = es.size(1);
auto height = es.size(2);
auto width = es.size(3);
AT_DISPATCH_FLOATING_TYPES(es.scalar_type(), "photometric_loss_forward_cuda", ([&] {
if(type == PHOTOMETRIC_LOSS_MSE) {
iterate_cuda(
PhotometricLossForward<scalar_t, PHOTOMETRIC_LOSS_MSE>(es.data<scalar_t>(), ta.data<scalar_t>(), block_size, eps, batch_size, channels, height, width, out.data<scalar_t>()),
out.numel());
}
else if(type == PHOTOMETRIC_LOSS_SAD) {
iterate_cuda(
PhotometricLossForward<scalar_t, PHOTOMETRIC_LOSS_SAD>(es.data<scalar_t>(), ta.data<scalar_t>(), block_size, eps, batch_size, channels, height, width, out.data<scalar_t>()),
out.numel());
}
else if(type == PHOTOMETRIC_LOSS_CENSUS_MSE) {
iterate_cuda(
PhotometricLossForward<scalar_t, PHOTOMETRIC_LOSS_CENSUS_MSE>(es.data<scalar_t>(), ta.data<scalar_t>(), block_size, eps, batch_size, channels, height, width, out.data<scalar_t>()),
out.numel());
}
else if(type == PHOTOMETRIC_LOSS_CENSUS_SAD) {
iterate_cuda(
PhotometricLossForward<scalar_t, PHOTOMETRIC_LOSS_CENSUS_SAD>(es.data<scalar_t>(), ta.data<scalar_t>(), block_size, eps, batch_size, channels, height, width, out.data<scalar_t>()),
out.numel());
}
}));
}
void photometric_loss_backward_kernel(at::Tensor es, at::Tensor ta, at::Tensor grad_out, int block_size, int type, float eps, at::Tensor grad_in) {
auto batch_size = es.size(0);
auto channels = es.size(1);
auto height = es.size(2);
auto width = es.size(3);
AT_DISPATCH_FLOATING_TYPES(es.scalar_type(), "photometric_loss_backward_cuda", ([&] {
if(type == PHOTOMETRIC_LOSS_MSE) {
iterate_cuda(
PhotometricLossBackward<scalar_t, PHOTOMETRIC_LOSS_MSE>(es.data<scalar_t>(), ta.data<scalar_t>(), grad_out.data<scalar_t>(), block_size, eps, batch_size, channels, height, width, grad_in.data<scalar_t>()),
grad_out.numel());
}
else if(type == PHOTOMETRIC_LOSS_SAD) {
iterate_cuda(
PhotometricLossBackward<scalar_t, PHOTOMETRIC_LOSS_SAD>(es.data<scalar_t>(), ta.data<scalar_t>(), grad_out.data<scalar_t>(), block_size, eps, batch_size, channels, height, width, grad_in.data<scalar_t>()),
grad_out.numel());
}
else if(type == PHOTOMETRIC_LOSS_CENSUS_MSE) {
iterate_cuda(
PhotometricLossBackward<scalar_t, PHOTOMETRIC_LOSS_CENSUS_MSE>(es.data<scalar_t>(), ta.data<scalar_t>(), grad_out.data<scalar_t>(), block_size, eps, batch_size, channels, height, width, grad_in.data<scalar_t>()),
grad_out.numel());
}
else if(type == PHOTOMETRIC_LOSS_CENSUS_SAD) {
iterate_cuda(
PhotometricLossBackward<scalar_t, PHOTOMETRIC_LOSS_CENSUS_SAD>(es.data<scalar_t>(), ta.data<scalar_t>(), grad_out.data<scalar_t>(), block_size, eps, batch_size, channels, height, width, grad_in.data<scalar_t>()),
grad_out.numel());
}
}));
}

View File

@ -1,126 +1,4 @@
import torch
from . import ext_cpu
from . import ext_cuda
class NNFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, in0, in1):
args = (in0, in1)
if in0.is_cuda:
out = ext_cuda.nn_cuda(*args)
else:
out = ext_cpu.nn_cpu(*args)
return out
@staticmethod
def backward(ctx, grad_out):
return None, None
def nn(in0, in1):
return NNFunction.apply(in0, in1)
class CrossCheckFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, in0, in1):
args = (in0, in1)
if in0.is_cuda:
out = ext_cuda.crosscheck_cuda(*args)
else:
out = ext_cpu.crosscheck_cpu(*args)
return out
@staticmethod
def backward(ctx, grad_out):
return None, None
def crosscheck(in0, in1):
return CrossCheckFunction.apply(in0, in1)
class ProjNNFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, xyz0, xyz1, K, patch_size):
args = (xyz0, xyz1, K, patch_size)
if xyz0.is_cuda:
out = ext_cuda.proj_nn_cuda(*args)
else:
out = ext_cpu.proj_nn_cpu(*args)
return out
@staticmethod
def backward(ctx, grad_out):
return None, None, None, None
def proj_nn(xyz0, xyz1, K, patch_size):
return ProjNNFunction.apply(xyz0, xyz1, K, patch_size)
class XCorrVolFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, in0, in1, n_disps, block_size):
args = (in0, in1, n_disps, block_size)
if in0.is_cuda:
out = ext_cuda.xcorrvol_cuda(*args)
else:
out = ext_cpu.xcorrvol_cpu(*args)
return out
@staticmethod
def backward(ctx, grad_out):
return None, None, None, None
def xcorrvol(in0, in1, n_disps, block_size):
return XCorrVolFunction.apply(in0, in1, n_disps, block_size)
class PhotometricLossFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, es, ta, block_size, type, eps):
args = (es, ta, block_size, type, eps)
ctx.save_for_backward(es, ta)
ctx.block_size = block_size
ctx.type = type
ctx.eps = eps
if es.is_cuda:
out = ext_cuda.photometric_loss_forward(*args)
else:
out = ext_cpu.photometric_loss_forward(*args)
return out
@staticmethod
def backward(ctx, grad_out):
es, ta = ctx.saved_tensors
block_size = ctx.block_size
type = ctx.type
eps = ctx.eps
args = (es, ta, grad_out.contiguous(), block_size, type, eps)
if grad_out.is_cuda:
grad_es = ext_cuda.photometric_loss_backward(*args)
else:
grad_es = ext_cpu.photometric_loss_backward(*args)
return grad_es, None, None, None, None
def photometric_loss(es, ta, block_size, type='mse', eps=0.1):
type = type.lower()
if type == 'mse':
type = 0
elif type == 'sad':
type = 1
elif type == 'census_mse':
type = 2
elif type == 'census_sad':
type = 3
else:
raise Exception('invalid loss type')
return PhotometricLossFunction.apply(es, ta, block_size, type, eps)
def photometric_loss_pytorch(es, ta, block_size, type='mse', eps=0.1):
type = type.lower()