import numpy as np _color_map_errors = np.array([ [149, 54, 49], # 0: log2(x) = -infinity [180, 117, 69], # 0.0625: log2(x) = -4 [209, 173, 116], # 0.125: log2(x) = -3 [233, 217, 171], # 0.25: log2(x) = -2 [248, 243, 224], # 0.5: log2(x) = -1 [144, 224, 254], # 1.0: log2(x) = 0 [97, 174, 253], # 2.0: log2(x) = 1 [67, 109, 244], # 4.0: log2(x) = 2 [39, 48, 215], # 8.0: log2(x) = 3 [38, 0, 165], # 16.0: log2(x) = 4 [38, 0, 165] # inf: log2(x) = inf ]).astype(float) def color_error_image(errors, scale=1, mask=None, BGR=True): """ Color an input error map. Arguments: errors -- HxW numpy array of errors [scale=1] -- scaling the error map (color change at unit error) [mask=None] -- zero-pixels are masked white in the result [BGR=True] -- toggle between BGR and RGB Returns: colored_errors -- HxWx3 numpy array visualizing the errors """ errors_flat = errors.flatten() errors_color_indices = np.clip(np.log2(errors_flat / scale + 1e-5) + 5, 0, 9) i0 = np.floor(errors_color_indices).astype(int) f1 = errors_color_indices - i0.astype(float) colored_errors_flat = _color_map_errors[i0, :] * (1 - f1).reshape(-1, 1) + _color_map_errors[i0 + 1, :] * f1.reshape(-1, 1) if mask is not None: colored_errors_flat[mask.flatten() == 0] = 255 if not BGR: colored_errors_flat = colored_errors_flat[:, [2, 1, 0]] return colored_errors_flat.reshape(errors.shape[0], errors.shape[1], 3).astype(np.int) _color_map_depths = np.array([ [0, 0, 0], # 0.000 [0, 0, 255], # 0.114 [255, 0, 0], # 0.299 [255, 0, 255], # 0.413 [0, 255, 0], # 0.587 [0, 255, 255], # 0.701 [255, 255, 0], # 0.886 [255, 255, 255], # 1.000 [255, 255, 255], # 1.000 ]).astype(float) _color_map_bincenters = np.array([ 0.0, 0.114, 0.299, 0.413, 0.587, 0.701, 0.886, 1.000, 2.000, # doesn't make a difference, just strictly higher than 1 ]) def color_depth_map(depths, scale=None): """ Color an input depth map. Arguments: depths -- HxW numpy array of depths [scale=None] -- scaling the values (defaults to the maximum depth) Returns: colored_depths -- HxWx3 numpy array visualizing the depths """ if scale is None: scale = depths.max() values = np.clip(depths.flatten() / scale, 0, 1) # for each value, figure out where they fit in in the bincenters: what is the last bincenter smaller than this value? lower_bin = ((values.reshape(-1, 1) >= _color_map_bincenters.reshape(1, -1)) * np.arange(0, 9)).max(axis=1) lower_bin_value = _color_map_bincenters[lower_bin] higher_bin_value = _color_map_bincenters[lower_bin + 1] alphas = (values - lower_bin_value) / (higher_bin_value - lower_bin_value) colors = _color_map_depths[lower_bin] * (1 - alphas).reshape(-1, 1) + _color_map_depths[ lower_bin + 1] * alphas.reshape(-1, 1) return colors.reshape(depths.shape[0], depths.shape[1], 3).astype(np.uint8) # from utils.debug import save_color_numpy # save_color_numpy(color_depth_map(np.matmul(np.ones((100,1)), np.arange(0,1200).reshape(1,1200)), scale=1000))