frontend/__init__.py: allow for data transfer minimization
This commit is contained in:
parent
922bd3ab80
commit
7e0305ed91
@ -44,7 +44,7 @@ def extract_data(data):
|
|||||||
# get result and rotate 90 deg
|
# get result and rotate 90 deg
|
||||||
pred_disp = cv2.transpose(np.asarray(data['disp'], dtype='uint8'))
|
pred_disp = cv2.transpose(np.asarray(data['disp'], dtype='uint8'))
|
||||||
|
|
||||||
if input not in data:
|
if 'input' not in data:
|
||||||
return pred_disp, duration
|
return pred_disp, duration
|
||||||
|
|
||||||
in_img = np.asarray(data['input'], dtype='uint8').transpose((2, 0, 1))
|
in_img = np.asarray(data['input'], dtype='uint8').transpose((2, 0, 1))
|
||||||
@ -72,6 +72,12 @@ def put_image(img_path):
|
|||||||
return data
|
return data
|
||||||
|
|
||||||
|
|
||||||
|
def change_minimal_data(enabled):
|
||||||
|
r = requests.post(f'{API_URL}/params/minimal_data/{not enabled}')
|
||||||
|
cv2.destroyWindow('Input Image')
|
||||||
|
cv2.destroyWindow('Reference Image')
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
while True:
|
while True:
|
||||||
for img in os.scandir(img_dir):
|
for img in os.scandir(img_dir):
|
||||||
@ -83,14 +89,18 @@ if __name__ == '__main__':
|
|||||||
downsize_input_img()
|
downsize_input_img()
|
||||||
|
|
||||||
data = put_image('buffer.png')
|
data = put_image('buffer.png')
|
||||||
|
if 'input' in data:
|
||||||
pred_disp, in_img, ref_pat, duration = extract_data(data)
|
pred_disp, in_img, ref_pat, duration = extract_data(data)
|
||||||
|
else:
|
||||||
|
pred_disp, duration = extract_data(data)
|
||||||
|
|
||||||
print(f'inference took {duration:1.4f}s')
|
print(f'inference took {duration:1.4f}s')
|
||||||
print(f'pipeline and transfer took another {(datetime.now() - start).total_seconds() - float(duration):1.4f}s')
|
print(f'pipeline and transfer took another {(datetime.now() - start).total_seconds() - float(duration):1.4f}s')
|
||||||
print(f"Pred. Disparity: \n\t{pred_disp.min():.{2}f}/{pred_disp.max():.{2}f}\n")
|
print(f"Pred. Disparity: \n\t{pred_disp.min():.{2}f}/{pred_disp.max():.{2}f}\n")
|
||||||
|
|
||||||
|
if 'input' in data:
|
||||||
cv2.imshow('Input Image', in_img)
|
cv2.imshow('Input Image', in_img)
|
||||||
# cv2.imshow('Reference Image', ref_pat)
|
cv2.imshow('Reference Image', ref_pat)
|
||||||
cv2.imshow('Normalized Predicted Disparity', normalize_and_colormap(pred_disp))
|
cv2.imshow('Normalized Predicted Disparity', normalize_and_colormap(pred_disp))
|
||||||
cv2.imshow('Predicted Disparity', pred_disp)
|
cv2.imshow('Predicted Disparity', pred_disp)
|
||||||
key = cv2.waitKey()
|
key = cv2.waitKey()
|
||||||
@ -99,3 +109,5 @@ if __name__ == '__main__':
|
|||||||
quit()
|
quit()
|
||||||
elif key == 101:
|
elif key == 101:
|
||||||
change_epoch()
|
change_epoch()
|
||||||
|
elif key == 109:
|
||||||
|
change_minimal_data('input' not in data)
|
||||||
|
Loading…
Reference in New Issue
Block a user