You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
48 lines
2.0 KiB
48 lines
2.0 KiB
import torch
|
|
import torch.nn.functional as F
|
|
import numpy as np
|
|
import cv2
|
|
from imread_from_url import imread_from_url
|
|
|
|
from nets import Model
|
|
|
|
if __name__ == '__main__':
|
|
|
|
model_path = "models/crestereo_eth3d.pth"
|
|
|
|
model = Model(max_disp=256, mixed_precision=False, test_mode=True)
|
|
model.load_state_dict(torch.load(model_path), strict=True)
|
|
model.eval()
|
|
|
|
in_h, in_w = (480, 640)
|
|
t1_half = torch.rand(1, 3, in_h//2, in_w//2)
|
|
t2_half = torch.rand(1, 3, in_h//2, in_w//2)
|
|
|
|
t1 = torch.rand(1, 3, in_h, in_w)
|
|
t2 = torch.rand(1, 3, in_h, in_w)
|
|
flow_init = torch.rand(1, 2, in_h//2, in_w//2)
|
|
|
|
# Export the model
|
|
torch.onnx.export(model,
|
|
(t1, t2, flow_init),
|
|
"crestereo.onnx", # where to save the model (can be a file or file-like object)
|
|
export_params=True, # store the trained parameter weights inside the model file
|
|
opset_version=12, # the ONNX version to export the model to
|
|
do_constant_folding=True, # whether to execute constant folding for optimization
|
|
input_names = ['left', 'right','flow_init'], # the model's input names
|
|
output_names = ['output'])
|
|
|
|
# # Export the model without init_flow (it takes a lot of time)
|
|
# # !! Needs Pytorch nightly until next release (1.12). Ref: https://github.com/pytorch/pytorch/pull/73760
|
|
# torch.onnx.export(model,
|
|
# (t1_half, t2_half),
|
|
# "crestereo_without_flow.onnx", # where to save the model (can be a file or file-like object)
|
|
# export_params=True, # store the trained parameter weights inside the model file
|
|
# opset_version=12, # the ONNX version to export the model to
|
|
# do_constant_folding=True, # whether to execute constant folding for optimization
|
|
# input_names = ['left', 'right'], # the model's input names
|
|
# output_names = ['output'])
|
|
|
|
|
|
|
|
|
|
|